Citation: | ZHAO Wei-jia, CHEN Li-qun, Jean W Zu. Finite Difference Method for Simulatting Transverse Vibrations of an Axially Moving Viscoelatic String[J]. Applied Mathematics and Mechanics, 2006, 27(1): 21-27. |
[1] |
陈立群,Zu J W.轴向运动弦线的横向振动及其控制[J].力学进展,2001,31(4):535—546.
|
[2] |
Abrate A S.Vibration of belts and belt drivers[J].Mech Mach Theory,1992,27(6):645—659. doi: 10.1016/0094-114X(92)90064-O
|
[3] |
Zhang L,Zu J W.One-to-one auto-parametric resonance in serpentine belt drive systems[J].J of Sound and Vibration,2000,232(4):783—806. doi: 10.1006/jsvi.1999.2764
|
[4] |
Zhang L,Zu J W.Non-linear Vibrations of parametrically excited viscoelastic moving belts[J].Part Ⅰ:Dynamic resonse.J of Applied Mechanics,1999,66(2):396—402.
|
[5] |
ZHAO Wei-jia,CHEN Li-qun.A numerical algorithm for nonlinear vibration analysis of a viscoelastic moving belt[J].International J.of Nonlinear Science and Numerical Simulation,2002,3(2):139—144.
|
[6] |
Beikmann R S,Perkins N C,Ulsoy A G.Free vibration of serpentine belt drive system[J].J of Vibration and Acoustics,1996,118(3):06—413.
|
[7] |
Ni Y Q,Lou W J,Ko J M.A hybrid pseudo-force/Laplace transform method for non-linear transient response of suspended cable[J].J of sound and vibration,2000,238(2):189—214. doi: 10.1006/jsvi.2000.3082
|
[8] |
Chen T M.The hybrid laplace transform/finite element method applied to the quasi-static and dynamic analysis of vicoelastic timoshenko beams[J].International J Numerical Method in Eng,1995,38:509—522. doi: 10.1002/nme.1620380310
|
[9] |
Gobat J I,Grosenbaugh M A.Comput methods appl[J].Mech Engrg,2001,190(37/38):487—489.
|
[10] |
Marchuk G I.Methods of Numerical Mathematics[M].New York:Springr-Verlag,1981.
|
[11] |
CHEN Li-qun,ZHAO Wei-jia.A computation method for nonlinear vibration of axially accelerating viscoelastic strings[J].Applied Mathematics and Computation,2005,162:305—310. doi: 10.1016/j.amc.2003.12.100
|