Citation: | WANG La-di, LI Jian-quan. Qualitative Analysis of an SEIS Epidemic Model With Nonlinear Incidence Rate[J]. Applied Mathematics and Mechanics, 2006, 27(5): 591-596. |
[1] |
Wang W,Ma Z.Global dynamics of an epidemic model with delay[J].Nonlinear Analysis: Real World Applications,2002,3:809—834.
|
[2] |
Wang W.Global behavior of an SEIRS epidemic model time delays[J].Applied Mathematics Letters,2002,15(2):423—428. doi: 10.1016/S0893-9659(01)00153-7
|
[3] |
Thieme R H.Persistence under relaxed point-dissipativity (with applications to an endemic model)[J].SIAM Journal of Mathematical Analysis,1993,24(2):407—435. doi: 10.1137/0524026
|
[4] |
Hethcote H W.The mathematics of infectious diseases[J].SIAM Review,2000,42(3):599—653. doi: 10.1137/S0036144500371907
|
[5] |
Li J,Ma Z.Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J].Mathematical and Computer Modelling,2002,20(5):1235—1243.
|
[6] |
Capasso V,Serrio G.A generalization of the Kermack-Mckendrick deterministic epidemic model[J].Mathematical Biosicences,1978,42(2):327—346.
|
[7] |
Liu W M,Hethcote H W,Levin S A.Dynamical behavior of epidemiological model with nonlinear incidence rates[J].Journal of Mathematical Biology,1987,25(2):359—380. doi: 10.1007/BF00277162
|
[8] |
Liu W M,Levin S A,Iwasa Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].Journal of Mathematical Biology,1986,23(1):187—204. doi: 10.1007/BF00276956
|
[9] |
Ruan S, Wang W.Dynamical behavior of an epidemic model with a nonlinear incidence rate[J].Journal of Differential Equations,2003,188(1):135—163. doi: 10.1016/S0022-0396(02)00089-X
|
[10] |
Derrick W R,van den Driessche P. A disease transmission model in a nonconstant population[J].Journal of Mathematical Biology,1993,31(3):495—512.
|
[11] |
Fonda A.Uniformly persistent semidynamical systems[J].Proceedings of American Mathematical Society,1988,104(1):111—116. doi: 10.1090/S0002-9939-1988-0958053-2
|