LIN Xiao-jie, DU Zeng-ji, GE Wei-gao. Existence of Solutions for Higher Order Multi-Point Boundary Value Problems at Resonance[J]. Applied Mathematics and Mechanics, 2006, 27(5): 624-630.
Citation: LIN Xiao-jie, DU Zeng-ji, GE Wei-gao. Existence of Solutions for Higher Order Multi-Point Boundary Value Problems at Resonance[J]. Applied Mathematics and Mechanics, 2006, 27(5): 624-630.

Existence of Solutions for Higher Order Multi-Point Boundary Value Problems at Resonance

  • Received Date: 2004-02-01
  • Rev Recd Date: 2006-01-17
  • Publish Date: 2006-05-15
  • Using the theory of coincidence degree, a class of higher order multi-point boundary value problem for ordinary differerntial equations are studied. Under the boundary conditions satisfying the resonance case, some new existence results are obtained by supposing some conditions to the nonlinear term and applying a priori estimates.
  • loading
  • [1]
    Feng W,Webb J R L.Solvability of m-point boundary value problems with nonlinear growth[J].Journal of Mathematical Analysis and Applications,1997,212(2):467—480. doi: 10.1006/jmaa.1997.5520
    [2]
    DU Zeng-ji,GE Wei-gao,ZHOU Ming-ru.Singular perturbations for third-order nonlinear multi-point boundary value problem[J].Journal of Differential Equations,2005,218(1):69—90. doi: 10.1016/j.jde.2005.01.005
    [3]
    DU Zeng-ji,XUE Chun-yan,GE Wei-gao.Multiple solutions for three-point boundary value problem with nonlinear terms depending on the first order derivative[J].Archiv der Mathematik,2005,84(4):341—349. doi: 10.1007/s00013-004-1196-7
    [4]
    DU Zeng-ji,XUE Chun-yan,GE Wei-gao.On eigenvalue intervals for discrete second order boundary value problem[J].Acta Mathematicate Applicatae Sinica, English Series,2005,21(1):105—114. doi: 10.1007/s10255-005-0221-3
    [5]
    MA Ru-yun,Nelson Castaneda.Existence of solutions of nonlinear m-point boundary value problems[J].Journal of Mathematical Analysis and Applications,2001,256(2):556—567. doi: 10.1006/jmaa.2000.7320
    [6]
    Gupta C P.A generalized multi-point boundary value problem for second order ordinary differential equations[J].Applied Mathematics and Computation,1998,89(1):133—146. doi: 10.1016/S0096-3003(97)81653-0
    [7]
    LIU Bin.Solvability of multi-point boundary value problem at resonance(Ⅱ)[J].Applied Mathematics and Computation,2003,136(2):353—377. doi: 10.1016/S0096-3003(02)00050-4
    [8]
    LIU Bin,YU Jian-she.Solvability of multi-point boundary value problem at resonance (Ⅲ)[J].Applied Mathematics and Computation,2002,129(1):119—143. doi: 10.1016/S0096-3003(01)00036-4
    [9]
    Gupta C P.A second order m-point boundary value problem at resonance[J].Nonlinear Analysis: Theory, Methods & Applications,1995,24(10):1483—1489.
    [10]
    Nagle R K,Pothoven K L.On a third-order nonlinear boundary value problems at resonance[J].Journal of Mathematical Analysis and Applications,1995,195(1):148—159. doi: 10.1006/jmaa.1995.1348
    [11]
    DU Zeng-ji,LIN Xiao-jie,GE Wei-gao.On a third order multi-point boundary value problem at resonance[J].Journal of Mathematical Analysis and Applications,2005,302(1):217—229. doi: 10.1016/j.jmaa.2004.08.012
    [12]
    DU Zeng-ji,GE Wei-gao,LIN Xiao-jie.Existence of solutions for a class of third-order nonlinear boundary value problems [J].Journal of Mathematical Analysis and Applications, 2004,294(1):104—112. doi: 10.1016/j.jmaa.2004.02.001
    [13]
    Mawhin J.Topological degree methods in nonlinear boundary value problems[A].In:Nsfcbms Regional Conference Series in Mathematics[C].Providence.Rhode Island:American Mathematical Society,U S A,1979.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2072) PDF downloads(619) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return