ZHANG Shi-sheng. Multi-Valued Quasi Variational Inclusions in Banach Spaces[J]. Applied Mathematics and Mechanics, 2004, 25(6): 572-580.
Citation: ZHANG Shi-sheng. Multi-Valued Quasi Variational Inclusions in Banach Spaces[J]. Applied Mathematics and Mechanics, 2004, 25(6): 572-580.

Multi-Valued Quasi Variational Inclusions in Banach Spaces

  • Received Date: 2002-07-04
  • Rev Recd Date: 2003-12-30
  • Publish Date: 2004-06-15
  • The purpose is to introduce and study a class of more general multivalued quasi variational inclusions in Banach spaces. By using the resolvent operator technique some existence theorem of solutions and iterative approximation for solving this kind of multivalued quasi variational inclusions are established. The results generalize, improve and unify a number of Noor's and others' recent results.
  • loading
  • [1]
    Noor M A.Set-valued quasi variational inequalities[J].K J Comput Appl Math,2000,7:101—113.
    [2]
    Noor M A.Three-step approximation schemes for multivalued quasi variational inclusions[J].Nonlinear Funct Anal Appl,2001,6(3):383—394.
    [3]
    Noor M A.Two-step approximation schemes for multivalued quasi variational inclusions[J].Nonlinear Funct Anal Appl,2002,7(1):1—14.
    [4]
    Noor M A.Multivalued quasi variational inclusions and implicit resolvent equations[J].Nonlinear Anal TMA,2002,48(2):159—174. doi: 10.1016/S0362-546X(00)00177-2
    [5]
    Chang S S,Cho Y J,Lee B S,et al.Generalized set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2000,246:409—422. doi: 10.1006/jmaa.2000.6795
    [6]
    Chang S S.Set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2000,248:438—454. doi: 10.1006/jmaa.2000.6919
    [7]
    Chang S S,Kim J K,Kim K H.On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2002,268:89—108. doi: 10.1006/jmaa.2001.7800
    [8]
    Barbu V.Nonlinear Semigroups and Differential Equations in Banach Spaces[M].Leyden:Noordhaff,1979.
    [9]
    Noor M A. Generalized set-valued variational inclusions and resolvent equations[J]. J Math Anal Appl,1998,228:206—220. doi: 10.1006/jmaa.1998.6127
    [10]
    Chang S S.Some problems and results in the study of nonlinear analysis[J].Nonlinear Anal TMA,1997,30:4197—4208. doi: 10.1016/S0362-546X(97)00388-X
    [11]
    Nadler S B.Multi-valued contraction mappings[J].Pacific J Math,1969,30:475—488.
    [12]
    Noor M A.Some algorithms for general monotone mixed variational inequalities[J].Math Computer Modelling,1999,29(7):1—7.
    [13]
    Uko L U.Strongly nonlinear generalized equations[J].J Math Anal Appl,1998,220:65—76. doi: 10.1006/jmaa.1997.5796
    [14]
    Zeng L U.Iterative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasi-variational inequality[J].J Math Anal Appl,1996,201:180—191. doi: 10.1006/jmaa.1996.0249
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2644) PDF downloads(690) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return