XU Zi-xiang, ZHOU De-yun, DENG Zi-chen. Exact Linearization Based Multiple-Subspace Iterative Resolution to Affine Nonlinear Control System[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1457-1463.
 Citation: XU Zi-xiang, ZHOU De-yun, DENG Zi-chen. Exact Linearization Based Multiple-Subspace Iterative Resolution to Affine Nonlinear Control System[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1457-1463.

# Exact Linearization Based Multiple-Subspace Iterative Resolution to Affine Nonlinear Control System

• Rev Recd Date: 2006-07-05
• Publish Date: 2006-12-15
• To the optimal control problem of affine nonlinear system, based on differential geometry theory, feedback precise linearization was used. Then starting from the simulative relationship between computational structural mechanics and optimal control, multiple-substructure method was induced to solve the optimal control problem which was linearized. And finally the solution to the original nonlinear system was found. Compared with the classical linearizational method of Taylor expansion, this one diminishes the abuse of error expansion with the enlargement of used region.
•  [1] 钟万勰,欧阳华江,邓子辰. 计算结构力学与最优控制[M].大连：大连理工大学出版社，1993. [2] 史小平,许天舒.两类不确定非线性系统的最优控制[J].电机与控制学报,2000，4(4)：223—226. [3] Cheng D,Tarn T J,Isidori A.Global external linearization of nonlinear system via feedback[J].IEEE Transactions on Automatic Control,1985,39(8):808—811. [4] 周雪松,马幼捷.非线性控制理论几何结构原理的基本概念[J].青岛大学学报，1997，12(1)：23—28. [5] DENG Zi-chen.The optimal solution of the constrained nonlinear control system[J].Computers & Structures,1994,53(5):1115—1121. [6] 邓子辰.混合能消元法在受约束非线性控制系统中的应用[J].工程力学，1994，11(1)：124—132. [7] 邓子辰.多重子结构法在非线性控制系统中的应用[J].力学学报,1994，24(2)：239—246. [8] 钟万勰.代数黎卡提方程的求解与辛子空间迭代法[J].上海力学,1994，15(2)：1—11. [9] 冯纯伯.非线性控制系统分析与设计[M].北京:电子工业出版社, 2001.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142