JIN Jian-ming, XUE Peng-xiang, XU Ying-xiang, ZHU Ya-li. Compactly Supported Non-Tensor Product Form Two Dimension Wavelet Finite Element[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1464-1476.
 Citation: JIN Jian-ming, XUE Peng-xiang, XU Ying-xiang, ZHU Ya-li. Compactly Supported Non-Tensor Product Form Two Dimension Wavelet Finite Element[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1464-1476.

# Compactly Supported Non-Tensor Product Form Two Dimension Wavelet Finite Element

• Rev Recd Date: 2006-06-23
• Publish Date: 2006-12-15
• Some theorems of compactly supported non-tensor product form two dimension Daubechies wavelet was analysed carefully. Compactly supported non-tensor product form two dimension wavelet was constructed, then non-tensor product form two dimension wavelet finite element was used to solve the deflection problem of elastic thin plate. The error order was researched. A numerical example was given at last.
•  [1] Daubechies Ingrid.Orthonormal bases of compactly supported wavelets[J].Comm Pure Appl Math,1988,41(7):909—996. [2] Mallat Stephane G. Multiresolution approximation and wavelet orthonormal bases of L2(R)[J].Trans Amer Math Soc,1989,315(1):69—87. [3] 金坚明. 二维小波函数中gn的分析与具体计算[J].甘肃科学学报,2002，14(3):11—14. [4] 金坚明.二维共轭滤波器相应定理的探讨[J].西北师范大学学报(自然科学版),2001,37(3):12—18. [5] 金坚明.二维共轭滤波器及其构造[J].西北师范大学学报(自然科学版),2002，38(1):19—25. [6] DING Xuan-zhou.Construction of real-valued wavelets symmetry[J].Journal of Approximation Theory,1995,81(3):323—331. [7] 梁学章,何甲兴,王新民,等.小波分析[M].北京：国防工业出版社,2005. [8] 周又和,王记增,郑晓静.小波伽辽金有限元法在梁板结构中的应用[J].应用数学和力学,1998,19(8)：697—706. [9] 石钟慈.样条有限元[J].计算数学,1979,1(1):50—72. [10] Strang G,Fix G J.An Analysis of the Element Mothod[M].New York: Academic Press, 1973. [11] 金坚明.线性板问题中的有限元法[M].兰州：兰州大学出版社,1997. [12] 清华大学应用数学系《现代应用数学手册》编委会. 现代应用数学手册·计算方法分册[M].北京：北京出版社,1990.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

/