Citation: | LIU Fa-gui. Life-Span of Classical Solutions for One Dimensional Hydromagnetic Flow[J]. Applied Mathematics and Mechanics, 2007, 28(4): 462-470. |
[1] |
Jeffery A.Magnetohydrodynamics[M].New York:Interscience,1966.
|
[2] |
Cabannes H.Theoretical Magnetofluid Dynamics[M].Applied Mathematics and Mechanics 13.New York:Academic Press,1970.
|
[3] |
Rammaha M A.On the formation of singularities in magnetohydrodynamics waves[J].J Math Anal Appl,1994,188(4):940-955. doi: 10.1006/jmaa.1994.1472
|
[4] |
KONG De-xing.Formation of singularities in one dimensional hydromagnetic flow[J].Comm Theoret Phys,2000,37(4):385-392.
|
[5] |
Shankar R,Bhardwaj D.On reactive shock in magnetogasdynamics flow[J].J Math Appl Anal,1993,129(3):335-348.
|
[6] |
LIU Fa-gui.Global classical solutions for one dimensional hydromagnetic flow with dissipative terms[J].J Partial Differential Equations,2002,15(1):23-38.
|
[7] |
KONG De-xing.Life-span of classical solutions to quasilinear hyperbolic systems with slow decay initial data[J].Chinese Ann of Math,Ser B,2000,21(4):413-440. doi: 10.1142/S0252959900000431
|
[8] |
LI Tatsien,KONG De-xing.Blow up of periodic solutions to quasilinear hyperbolic systems[J].Nonlinear Anal,1996,26(11):1779-1789. doi: 10.1016/0362-546X(94)00366-P
|
[9] |
KONG De-xing.Cauchy Problem for Quasilinear Hyperbolic Systems[M].MSJ Memoirs.Vol 6.Tokyo:The Mathematical Society of Japan,2000.
|