Citation: | LIN Jian-guo, XIE Zhi-hua, ZHOU Jun-tao. Three-Point Explicit Compact Difference Scheme With Arbitrary Order of Accuracy and Its Applicatin in CFD[J]. Applied Mathematics and Mechanics, 2007, 28(7): 843-852. |
[1] |
Carpenter M H, Gottlieb D, Abarbanel S. The stability of numerical boundary treatments for compact high-order finite-difference schemes[J].Journal of Computational Physics,1993,108(2):272-295. doi: 10.1006/jcph.1993.1182
|
[2] |
Lele S K. Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16-42. doi: 10.1016/0021-9991(92)90324-R
|
[3] |
Chu P C, FAN Chen-wu.A three-point combined compact difference scheme[J].Journal of Computational Physics,1998,140(2):370-399. doi: 10.1006/jcph.1998.5899
|
[4] |
Mahesh K. A family of high order finite difference schemes with good spectral resolution[J].Journal of Computational Physics,1998,145(1):332-358. doi: 10.1006/jcph.1998.6022
|
[5] |
Hixon R. Prefactored small-stencil compact schemes[J].Journal of Computational Physics,2000,165(2):522-541. doi: 10.1006/jcph.2000.6631
|
[6] |
Tolstykh A I, Lipavskii M V.On performance of methods with third- and fifth-order compact upwind differencing[J].Journal of Computational Physics,1998,140(2):205-232. doi: 10.1006/jcph.1998.5887
|
[7] |
MA Yan-wen, FU De-xun, Kobayashi N,et al.Numerical solution of the incompressible Navier-Stokes equations with an upwind compact difference scheme[J].International Journal for Numerical Methods in Fluids,1999,30(5):509-521. doi: 10.1002/(SICI)1097-0363(19990715)30:5<509::AID-FLD851>3.0.CO;2-E
|
[8] |
MA Yan-wen, FU De-xun.Analysis of super compact finite difference method and application to simulation of vortex-shock interaction[J].International Journal for Numerical Methods in Fluids,2001,36(7):773-805. doi: 10.1002/fld.155
|
[9] |
Boersma B J. A staggered compact finite difference formulation for the compressible Navier-Stokes equations[J].Journal of Computational Physics,2005,208(2):675-690. doi: 10.1016/j.jcp.2005.03.004
|
[10] |
袁湘江,周恒.计算激波的高精度数值方法[J].应用数学和力学,2000,21(5):441-450.
|
[11] |
刘儒勋,吴玲玲.非线性发展方程的小模板简化pade格式[J]. 应用数学和力学,2005,26(7):801-809.
|
[12] |
Fomberg B, Ghrist M. Spatial finite difference approximations for wave-type equation[J].SIAM Journal on Numerical Analysis,1999,37(1):105-130. doi: 10.1137/S0036142998335881
|
[13] |
林建国,邱大洪.二阶非线性与色散性的Boussinesq类方程[J]. 中国科学,E辑,1998,28(6):567-573.
|
[14] |
Spotz W F. High order compact finite difference schemes for computational mechanics[D].Austin:University of Texas, 1995.
|
[15] |
Kalita J C, Dalal D C, Dass A K.A class of higher order compact schemes for the unsteady two-dimensional convection diffusion equation with variable convection coefficients[J].International Journal for Numerical Methods in Fluids,2002,38(12):1111-1131. doi: 10.1002/fld.263
|
[16] |
Ghia U, Ghia K N,Shin C T.High-Re solutions for imcompressible flow using the Navier-Stokes equation and a multigrid method[J].Journal of Computational Physics,1982,48(3):387-411. doi: 10.1016/0021-9991(82)90058-4
|