留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反映强流动曲率效应的非线性湍流模型

徐晶磊 马晖扬 黄于宁

徐晶磊, 马晖扬, 黄于宁. 反映强流动曲率效应的非线性湍流模型[J]. 应用数学和力学, 2008, 29(1): 27-37.
引用本文: 徐晶磊, 马晖扬, 黄于宁. 反映强流动曲率效应的非线性湍流模型[J]. 应用数学和力学, 2008, 29(1): 27-37.
XU Jing-lei, MA Hui-yang, HUANG Yu-ning. Nonlinear Turbulence Models That Predict Strong Curvature Effects[J]. Applied Mathematics and Mechanics, 2008, 29(1): 27-37.
Citation: XU Jing-lei, MA Hui-yang, HUANG Yu-ning. Nonlinear Turbulence Models That Predict Strong Curvature Effects[J]. Applied Mathematics and Mechanics, 2008, 29(1): 27-37.

反映强流动曲率效应的非线性湍流模型

详细信息
    作者简介:

    徐晶磊(1982- ),男,湖北钟祥人,博士(Tel:+86-10-88256133);马晖扬(1942- )(联系人.Tel:+86-10-88256133).

  • 中图分类号: O35

Nonlinear Turbulence Models That Predict Strong Curvature Effects

  • 摘要: 首先定性地分析了流线曲率效应对流场湍流结构的影响,然后以U型槽道流为典型算例,对多种湍流模型进行了评估.评估的模型包括:线性涡粘性模型,二阶和三阶非线性涡粘性模型,二阶显式代数应力模型和Reynolds应力模型.评估结果表明,性能良好的三阶非线性涡粘性模型,如黄于宁等人发展的HM模型以及CLS模型,可以较好地描述流线的曲率效应对湍流结构的影响,如凸曲率作用下内壁附近湍流强度的衰减和凹曲率作用下外壁附近湍流的增强,并且较好地确定了管道下游的分离点位置和分离泡长度,其预测的结果和实验符合较好,与Reynolds力模型的结果十分接近,因此可以较好地应用于具有曲率效应的工程湍流的计算.
  • [1] Bradshaw P. Effects of streamline curvature on turbulent flow[R]. Agardograph progress No 169,AGARD,1973.
    [2] Durst F, Rastogi A K.Turbulent Shear Flows[M].Vol 2.Berlin:Springer, 1980.
    [3] 钱炜祺,符松.反映流动曲率影响的非线性湍流模式[J].空气动力学报,2001,19(2):203-209.
    [4] Rumsey C L, Gatski T B,Morrison J H. Turbulence model predictions of strong curved flow in a U-duct[J].AIAA J,2000,38(8):1394-1402. doi: 10.2514/2.1115
    [5] Huang Y N, Ma H Y. Reynolds stress model involving the mean spin tensor[J].Physical Review, E,2004,70(5):NO3:036302.1-036302.10.
    [6] Craft T J, Launder B E,Suga K. Development and application of a cubic eddy-viscosity model of turbulence[J].International Journal of Heat and Fluid Flow,1996,17(2):108-115. doi: 10.1016/0142-727X(95)00079-6
    [7] Yang X D, Ma H Y, Huang Y N. Prediction of homogeneous shear flow and a backward-facing step flow with some linear and non-linear k-εturbulence models[J].Communications in Nonlinear Science and Numerical Simulation,2005,10(3):315-328. doi: 10.1016/j.cnsns.2003.07.001
    [8] Huang Y N, Ma H Y, Chu H J. Modelling turbulent swirling flows based on the algebraic two-equation approach[J].Internat J Numer Methods Fluids,2006,51(3):285-304. doi: 10.1002/fld.1123
    [9] 马晖扬,黄宇宁,徐晶.非线性涡粘性湍流模型在非惯性中的应用[A].第十三届全国计算流动力学会议[C].丹东:全国计算流体力学会议组织委员会,中国航天空气动力技术研究院,2007,345-351.
    [10] Zhang H S, So R M C, Gatski T B,et al. A near-wall second-order closure for compressible turbulent flows near-wall turbulent flows[A].In:So R M C,Speziale C G,Launder B E,Eds.Near-Wall Turbulent Flows[C].Elsevies Science Publishers B V,1993,209-218.
    [11] Speziale C G, Abid R, Anderson C.Critical evaluation of two-equation models for near-wall turbulence[J].AIAA J,1992,30(2):324-331. doi: 10.2514/3.10922
    [12] Zhang H S, So R M C, Speziale C G,et al. Near-wall two-equation model for compressible turbulent flows[J].AIAA J,1992,31(1):196-199.
    [13] Shih T H, Zhu J,Lumley J L. A realizable Reynolds stress algebraic equation model[R]. NASA TM 105993,1993.
    [14] Abid R, Morrison J H,Gatski T B,et al. Prediction of aerodynamic flows with a new explicit algebraic stress model[J].AIAA J,1996,34(12):2632-2635. doi: 10.2514/3.13451
    [15] Monson D J, Lee Seegmiller H.An experimental investigation of subsonic flow in a two-dimensional U-duct[R]. NASA Technical Memorandum 103931.
    [16] Monson D J, Seegmiller H L, McConnaughey P K,et al.Comparison of experiment with calculations using curvature-corrected zero and two Equation turbulence models for a two-dimensional U-Duct[R]. AIAA 1990, 90-1484.
    [17] LUO Jiang, Lakshminarayana Budugur. Prediction of strongly curved turbulent duct flow with reynolds stress model[J].AIAA J,1997,35(1):
  • 加载中
计量
  • 文章访问数:  3031
  • HTML全文浏览量:  153
  • PDF下载量:  868
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-10-28
  • 修回日期:  2007-12-13
  • 刊出日期:  2008-01-15

目录

    /

    返回文章
    返回