## 留言板

 引用本文: 胡伟鹏, 邓子辰. 广义Boussinesq方程的多辛方法[J]. 应用数学和力学, 2008, 29(7): 839-845.
HU Wei-peng, DENG Zi-chen. Multi-Symplectic Method for Generalized Boussinesq Equation[J]. Applied Mathematics and Mechanics, 2008, 29(7): 839-845.
 Citation: HU Wei-peng, DENG Zi-chen. Multi-Symplectic Method for Generalized Boussinesq Equation[J]. Applied Mathematics and Mechanics, 2008, 29(7): 839-845.

## 广义Boussinesq方程的多辛方法

###### 作者简介:胡伟鹏(1977- ),男,湖北人,博士(E-mail:huweipeng@mail.nwpu.edu.cn);邓子辰(1964)),男,辽宁人,教授,博士,博士生导师(联系人.Tel:+86-29-88460403;E-mail:dweifan@nwpu.edu.cn).
• 中图分类号: O175.24

## Multi-Symplectic Method for Generalized Boussinesq Equation

• 摘要: 广义Boussinesq方程作为一类重要的非线性方程有着许多有趣的性质，基于Hamilton空间体系的多辛理论研究了广义Boussinesq方程的数值解法，构造了一种等价于多辛Box格式的新隐式多辛格式，该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律．对广义Boussinesq方程孤子解的数值模拟结果表明,该多辛离散格式具有较好的长时间数值稳定性．
•  [1] Bridge T J,Reich S.Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[J].Physics Letters A,2001,284(4/5):184-193. [2] Moore B E, Reich S. Multi-symplectic integration methods for Hamiltonian PDEs[J].Future Generation Computer Systems,2003,19(3):395-402. [3] Bridges T J. Multi-symplectic structures and wave propagation[J].Mathematical Proceedings of the Cambridge Philosophical Society,1997,121(1):147-190. [4] Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].Computational Physics,2000,157(2):473-499. [5] Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic preissmann scheme for the KdV equation[J].Journal of Physics, A，Mathematical and General,2000,33(18):3613-3626. [6] Islas A L, Schober C M. Multi-symplectic methods for generalized Schrdinger equations[J].Future Generation Computer Systems,2003,19(3):403-413. [7] 胡伟鹏,邓子辰, 李文成.膜自由振动的多辛方法[J].应用数学和力学,2007,28(9):1054-1062. [8] HUANG Lang-yang, ZENG Wen-ping, QIN Meng-zhao. A new multi-symplectic scheme for nonlinear “good” Boussinesq equation[J].Journal of Computational Mathematics,2003,21(6):703-714. [9] 曾文平,黄浪扬,秦孟兆.“Good”Boussinesq方程的多辛算法[J].应用数学和力学,2002,23(7):743-748. [10] Hirota R. Exact envelope-soliton solutions of a nonlinear wave[J].Journal of Mathematical Physics,1973,14(7):805-809. [11] Hirota R. Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices[J].Journal of Mathematical Physics,1973,14(7):810-814. [12] Nimmo J J C,Freeman N C.A method of obtaining the N-soliton solutions of the Boussinesq equation in terms of a Wronskian[J].Physics Letters A,1983,95(1):4-6. [13] Zhang Y, Chen D Y. A modified Bcklund transformation and multi-soliton solution for the Boussinesq equation[J].Chaos, Solitons & Fractals,2005,23(1):175-181. [14] Kaptsov O V. Construction of exact solutions of the Boussinesq equation[J].Journal of Applied Mechanics and Theoretical Physics,1998,39(3):389-392. [15] Wazwaz Abdul-Majid.Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method[J].Chaos, Solitons & Fractals,2001,12(8):1549-1556. [16] Yan Z Y, Bluman G. New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations[J].Computer Physics Communications,2002,149(1):11-18. [17] Wazwaz Abdul-Majid.Multiple-soliton solutions for the Boussinesq equation[J].Applied Mathematics and Computation,2007,192(2):479-486. [18] El-Zoheiry H. Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation[J].Applied Numerical Mathematics,2003,45(2/3):161-173.

##### 计量
• 文章访问数:  2647
• HTML全文浏览量:  34
• PDF下载量:  562
• 被引次数: 0
##### 出版历程
• 收稿日期:  2008-01-16
• 修回日期:  2008-05-09
• 刊出日期:  2008-07-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈