留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义Boussinesq方程的多辛方法

胡伟鹏 邓子辰

胡伟鹏, 邓子辰. 广义Boussinesq方程的多辛方法[J]. 应用数学和力学, 2008, 29(7): 839-845.
引用本文: 胡伟鹏, 邓子辰. 广义Boussinesq方程的多辛方法[J]. 应用数学和力学, 2008, 29(7): 839-845.
HU Wei-peng, DENG Zi-chen. Multi-Symplectic Method for Generalized Boussinesq Equation[J]. Applied Mathematics and Mechanics, 2008, 29(7): 839-845.
Citation: HU Wei-peng, DENG Zi-chen. Multi-Symplectic Method for Generalized Boussinesq Equation[J]. Applied Mathematics and Mechanics, 2008, 29(7): 839-845.

广义Boussinesq方程的多辛方法

基金项目: 国家自然科学基金资助项目(10572119;10772147;10632030);高校博士点基金资助项目(20070699028);陕西省自然科学基金资助项目(2006A07);大连理工大学工业装备结构分析国家重点实验室开放基金资助项目
详细信息
    作者简介:

    胡伟鹏(1977- ),男,湖北人,博士(E-mail:huweipeng@mail.nwpu.edu.cn);邓子辰(1964)),男,辽宁人,教授,博士,博士生导师(联系人.Tel:+86-29-88460403;E-mail:dweifan@nwpu.edu.cn).

  • 中图分类号: O175.24

Multi-Symplectic Method for Generalized Boussinesq Equation

  • 摘要: 广义Boussinesq方程作为一类重要的非线性方程有着许多有趣的性质,基于Hamilton空间体系的多辛理论研究了广义Boussinesq方程的数值解法,构造了一种等价于多辛Box格式的新隐式多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律.对广义Boussinesq方程孤子解的数值模拟结果表明,该多辛离散格式具有较好的长时间数值稳定性.
  • [1] Bridge T J,Reich S.Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[J].Physics Letters A,2001,284(4/5):184-193. doi: 10.1016/S0375-9601(01)00294-8
    [2] Moore B E, Reich S. Multi-symplectic integration methods for Hamiltonian PDEs[J].Future Generation Computer Systems,2003,19(3):395-402. doi: 10.1016/S0167-739X(02)00166-8
    [3] Bridges T J. Multi-symplectic structures and wave propagation[J].Mathematical Proceedings of the Cambridge Philosophical Society,1997,121(1):147-190. doi: 10.1017/S0305004196001429
    [4] Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].Computational Physics,2000,157(2):473-499. doi: 10.1006/jcph.1999.6372
    [5] Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic preissmann scheme for the KdV equation[J].Journal of Physics, A,Mathematical and General,2000,33(18):3613-3626. doi: 10.1088/0305-4470/33/18/308
    [6] Islas A L, Schober C M. Multi-symplectic methods for generalized Schrdinger equations[J].Future Generation Computer Systems,2003,19(3):403-413. doi: 10.1016/S0167-739X(02)00167-X
    [7] 胡伟鹏,邓子辰, 李文成.膜自由振动的多辛方法[J].应用数学和力学,2007,28(9):1054-1062.
    [8] HUANG Lang-yang, ZENG Wen-ping, QIN Meng-zhao. A new multi-symplectic scheme for nonlinear “good” Boussinesq equation[J].Journal of Computational Mathematics,2003,21(6):703-714.
    [9] 曾文平,黄浪扬,秦孟兆.“Good”Boussinesq方程的多辛算法[J].应用数学和力学,2002,23(7):743-748.
    [10] Hirota R. Exact envelope-soliton solutions of a nonlinear wave[J].Journal of Mathematical Physics,1973,14(7):805-809. doi: 10.1063/1.1666399
    [11] Hirota R. Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices[J].Journal of Mathematical Physics,1973,14(7):810-814. doi: 10.1063/1.1666400
    [12] Nimmo J J C,Freeman N C.A method of obtaining the N-soliton solutions of the Boussinesq equation in terms of a Wronskian[J].Physics Letters A,1983,95(1):4-6. doi: 10.1016/0375-9601(83)90765-X
    [13] Zhang Y, Chen D Y. A modified Bcklund transformation and multi-soliton solution for the Boussinesq equation[J].Chaos, Solitons & Fractals,2005,23(1):175-181.
    [14] Kaptsov O V. Construction of exact solutions of the Boussinesq equation[J].Journal of Applied Mechanics and Theoretical Physics,1998,39(3):389-392. doi: 10.1007/BF02468120
    [15] Wazwaz Abdul-Majid.Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method[J].Chaos, Solitons & Fractals,2001,12(8):1549-1556.
    [16] Yan Z Y, Bluman G. New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations[J].Computer Physics Communications,2002,149(1):11-18. doi: 10.1016/S0010-4655(02)00587-8
    [17] Wazwaz Abdul-Majid.Multiple-soliton solutions for the Boussinesq equation[J].Applied Mathematics and Computation,2007,192(2):479-486. doi: 10.1016/j.amc.2007.03.023
    [18] El-Zoheiry H. Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation[J].Applied Numerical Mathematics,2003,45(2/3):161-173. doi: 10.1016/S0168-9274(02)00187-3
  • 加载中
计量
  • 文章访问数:  2647
  • HTML全文浏览量:  34
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-01-16
  • 修回日期:  2008-05-09
  • 刊出日期:  2008-07-15

目录

    /

    返回文章
    返回