留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超抛物型方程的非线性奇摄动问题

林苏榕 莫嘉琪

林苏榕, 莫嘉琪. 超抛物型方程的非线性奇摄动问题[J]. 应用数学和力学, 2008, 29(10): 1249-1253.
引用本文: 林苏榕, 莫嘉琪. 超抛物型方程的非线性奇摄动问题[J]. 应用数学和力学, 2008, 29(10): 1249-1253.
LIN Su-rong, MO Jia-qi. Nonlinear Singularly Perturbed Problems of Ultra Parabolic Equations[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1249-1253.
Citation: LIN Su-rong, MO Jia-qi. Nonlinear Singularly Perturbed Problems of Ultra Parabolic Equations[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1249-1253.

超抛物型方程的非线性奇摄动问题

基金项目: 国家自然科学基金资助项目(40676016);国家重点基础研究发展规划资助项目(2003CB415101-03;2004CB418304);中国科学院知识创新工程资助方向性项目(KZCX3-SW-221);上海市教育委员会E-研究院建设计划资助项目(E03004);浙江省自然科学基金资助项目(Y606268)
详细信息
    作者简介:

    林苏榕(1958- ),女,福建福州人,副教授(Tel:+86-553-87864970;E-mail:lsr@fjrtvu.edu.cn);莫嘉琪(1937- ),男,浙江德清人,教授(联系人.Tel:+86-553-3869642;E-mail:mojiaqi@mail.ahnu.edu.cn).

  • 中图分类号: O175.29

Nonlinear Singularly Perturbed Problems of Ultra Parabolic Equations

  • 摘要: 讨论了一类超抛物型方程的非线性奇摄动问题.利用比较定理,研究了问题解的存在性及其渐近性态.
  • [1] Kok J B.The Fokker-Planck equation for bubbly flows and the motion of gas bubblypairs[J].Appl Sci Res,1998,58(2):319-335.
    [2] Akhmetov D R,Lavrentiev Jr M M,Spigler R.Singular perturbations for certain partial differential equations without boundary-layers[J].Asymptotic Anal,2003,35(1):65-89.
    [3] Guarguaglini F R,Natalini R.Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena[J].Comm Partial Differential Equations,2007,32(2):163-189. doi: 10.1080/03605300500361438
    [4] Duehring D,HUANG Wen-zhang.Periodic traveling waves for diffusion equations with time delayed and non-local responding reaction[J].J Dynamics Differential Equations,2007,19(2):457-477. doi: 10.1007/s10884-006-9048-8
    [5] NI Wei-ming,WEI Jun-cheng.On positive solution concentrating on spheres for the Gierer-Meinhardt system[J].J Differential Equations,2006,221(1):158-189. doi: 10.1016/j.jde.2005.03.004
    [6] Bartier J P.Global behavior of solutions of a reaction-diffusion equation with gradient a bsorption in unbounded domains[J].Asymptotic Anal,2006,46(3/4):325-347.
    [7] Marques I.Existence and asymptotic behavior of solutions for a class of nonlinear elliptic equations with Neumann condition[J].Nonlinear Anal,2005,61(1):21-40. doi: 10.1016/j.na.2004.11.006
    [8] MO Jia-qi.A singularly perturbed nonlinear boundary value problem[J].J Math Anal Appl,1993,178(1):289-293. doi: 10.1006/jmaa.1993.1307
    [9] MO Jia-qi.Singular perturbation for a class of nonlinear reaction diffusion systems[J].Science in China,Ser A,1989,32(11):1306-1315.
    [10] MO Jia-qi,LIN Wan-tao.A nonlinear singular perturbed problem for reaction diffusion equations with boundary perturbation[J].Acta Math Appl Sinica,2005,21(1):101-104. doi: 10.1007/s10255-005-0220-4
    [11] MO Jia-qi,Shao S.The singularly perturbed boundary value problems for higher-order semilinear elliptic equations[J].Advances in Mathematics,2001,30(2):141-148.
    [12] MO Jia-qi,ZHU Jiang,Wang H.Asymptotic behavior of the shock solution for a class of nonlinear equations[J].Progress in Natural Science,2003,13(10):768-770. doi: 10.1080/10020070312331344400
    [13] MO Jia-qi,LIN Wan-tao,ZHU Jiang.A variational iteration solving method for ENSO mechanism[J].Progress in Natural Science,2004,14(12):1126-1128. doi: 10.1080/10020070412331344921
    [14] MO Jia-qi,LIN Wan-tao.Perturbed solution for the ENSO nonlinear model[J].Acta Phys Sinica,2004,53(4):996-998.
    [15] MO Jia-qi,LIN Wan-tao.Homotopic solving method of equatorial eastern Pacific for the El Nino/La Nino-Southern Oscillation mechanism[J].Chinese Phys,2005,14(5):875-878. doi: 10.1088/1009-1963/14/5/002
    [16] Jager E M,Jiang F R.The Theory of Singular Perturbation[M].Amsterdam:North- Holland Publishing Co,1996.
  • 加载中
计量
  • 文章访问数:  2442
  • HTML全文浏览量:  24
  • PDF下载量:  642
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-11-27
  • 修回日期:  2008-08-12
  • 刊出日期:  2008-10-15

目录

    /

    返回文章
    返回