## 留言板

 引用本文: 曾六川. 一般多值混合隐拟变分不等式的解的存在性与算法[J]. 应用数学和力学, 2003, 24(11): 1170-1178.
ZENG Liu-chuan. Existence and Algorithm of Solutions for General Multivalued Mixed Implicit Quasi-Variational Inequalities[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1170-1178.
 Citation: ZENG Liu-chuan. Existence and Algorithm of Solutions for General Multivalued Mixed Implicit Quasi-Variational Inequalities[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1170-1178.

## 一般多值混合隐拟变分不等式的解的存在性与算法

###### 作者简介:曾六川(1965- ),男,湖南人,教授,博士生导师,已发表论文70余篇(E-mail:zengle@hotmail.com).
• 中图分类号: O177.91

## Existence and Algorithm of Solutions for General Multivalued Mixed Implicit Quasi-Variational Inequalities

• 摘要: 引入了实Hilbert空间中一类新的一般多值混合隐拟变分不等式.它概括了丁协平教授引入与研究过的熟知的广义混合隐拟变分不等式类成特例.运用辅助变分原理技巧来解这类一般多值混合隐拟变分不等式.首先,定义了具真凸下半连续的二元泛函的新的辅助变分不等式,并选取了一适当的泛函,使得其唯一的最小值点等价于此辅助变分不等式的解.其次,利用此辅助变分不等式,构造了用于计算一般多值混合隐拟变分不等式逼近解的新的迭代算法.在此,等价性保证了算法能够生成一列逼近解.最后,证明了一般多值混合隐拟变分不等式解的存在性与逼近解的收敛性.而且,给算法提供了新的收敛判据.因此,结果对M.A.Noor提出的公开问题给出了一个肯定答案,并推广和改进了关于各种变分不等式与补问题的早期与最近的结果,包括最近文献中涉及单值与集值映象的有关混合变分不等式、混合拟变不等式与拟补问题的相应结果.
•  [1] Harker P T,Pang J S.Finit-dimensional variational inequatlity and nonlinear complementarity problems:a survey of theory,algorithms and applications[J].Math Programming,1990,48(2):161 -220. [2] Noor M A,Noor K I,Rassias T M.Some aspects of variational inequalities[J].J Comput Appl Math,1993,47:285-312. [3] Noor M A.General algorithm for variational inequalities I[J].Math Japonica,1993,38:47-53. [4] Noor M A.Some recent advances in variational inequalities-Part Ⅰ:Basic concepts[J].New Zealand J Math,1997,26:53-80. [5] DING Xie-ping.Existence and algorithm of solutions for generalized mixed implicit quasi-variational inequalities[J].Appl Math Comput,2000,113:67-80. [6] 李红梅,丁协平.广义强非线性拟补问题[J].应用数学和力学,1994,15(4):289-296. [7] Cohen G.Auxiliary problem principle extended to variational inequalities[J].J Optim Theory Appl,1988,59:325-333. [8] DING Xie-ping.General algorithm of solutions for nonlinear variational inequalities in Banach spaces[J].Computer Math Appl,1997,34:131-137. [9] Noor M A.Nonconvex functions and variational inequalities[J].J Optim Theory Appl,1995,87:615-630. [10] Noor M A.Multivalued strongly nonlinear quasivariational inequalities[J].Chin J Math,1995,23:275-286. [11] Noor M A.On a class of multivalued variational inequalities[J].J Appl Math Stochastic Anal,1998,11:79-93. [12] Noor M A.Auxiliary principle for generalized mixed variational-like inequalities[J].J Math Anal Appl,1997,215:75-85. [13] Chang S S,Huang N J.Genralized strongly nonlinear quasi-complementarity problems in Hilbert spaces[J].J Math Anal Appl,1991,158,194-202. [14] ZENG Lu-chuan.Iterative algorithms for finding approximate solutions for general strongly nonlinear variational inequalities[J].J Math Anal Appl,1994,187:352-360. [15] ZENG Lu-chuan.Completely generalized strongly nonlinear quasi-complementarity problems in Hilbert spaces[J].J Math Anal Appl,1995,193:706-714. [16] ZENG Lu-chuan.Iterative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasi-variational inequalities[J].J Math Anal Appl,1996,201:180-194. [17] ZENG Lu-chuan.On a general projection algorithm for variational inequalities[J].J Optim theory Appl,1998,97(1):229-235. [18] DING Xie-ping.A new class of generalized strongly nonlinear quasivariational inequalities and quasicomplementarity problems[J].Indian J Pure Appl Mathh,1994,25:1115-1128. [19] Chang S S,Huang N J.Generalized multivalued implicit complementarity problem in Hilbert space[J].Math Japonica,1991,36(6):1093-1100. [20] Pascall D,Sburlan S.Nonlinear Mappings of Monotone Type[M].The Netherlands:Sijthoff & Noordhoof,1978:24-25. [21] Nadler S B,Jr.Multi-valued contraction mappings[J].Pacific JMatlh,1969,30:475-487.

##### 计量
• 文章访问数:  1817
• HTML全文浏览量:  13
• PDF下载量:  749
• 被引次数: 0
##### 出版历程
• 收稿日期:  2001-07-19
• 修回日期:  2003-06-19
• 刊出日期:  2003-11-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈