## 留言板

 引用本文: 张解放, 刘宇陆. 高阶(2+1)维Broer-Kaup方程的局域相干结构[J]. 应用数学和力学, 2002, 23(5): 489-496.
ZHANG Jie-fang, LIU Yu-lu. Localized Coherent Structures of the(2+1)-Dimensional Higher Order Broer-Kaup Equations[J]. Applied Mathematics and Mechanics, 2002, 23(5): 489-496.
 Citation: ZHANG Jie-fang, LIU Yu-lu. Localized Coherent Structures of the(2+1)-Dimensional Higher Order Broer-Kaup Equations[J]. Applied Mathematics and Mechanics, 2002, 23(5): 489-496.

## 高阶(2+1)维Broer-Kaup方程的局域相干结构

###### 作者简介:张解放(1959- ),男,教授;刘宇陆(1959- ),男,教授,博士.
• 中图分类号: O175.29

## Localized Coherent Structures of the(2+1)-Dimensional Higher Order Broer-Kaup Equations

• 摘要: 利用推广的齐次平衡方法,研究高阶(2+1)维Broer-Kaup方程的局域相干结构.首先基于推广的齐次平衡方法,给出这个模型的一个非线性变换,并把它变换成一个线性化的方程.然后从线性化方程出发,构造出一个分离变量的拟解.由于拟解中不仅含有两个y的任意函数,而且还有{αi,βi,γk,kj,lk}和{N,M,L}这些参数可以任意选取,因此合适的选择这些函数和参数,可以得到新的相当丰富的孤子结构.方法直接而简单,可推广应用一大类(2+1)维非线性物理模.
•  [1] Boiti M,Leon J J P,Martina L,et al.Scattering of localized solitons in the plane[J].Phys Lett A,1988,132(8-9):432-439. [2] Fokas A S,Santini P M.On the simplest integrable equation in 2+1[J].Phyisica D,1990,44(1):99-104;Hietarinta J,Hirota R.Multidromion solutions to the Davey-Stewartson equation[J].Phys Lett A,1990,145(5):237-244. [3] Hietarinta J.One-dromion solutions for generic classes of equations[J].Phys Lett A,1990,149(2-3):113-117. [4] Radha R,Lakshmanan M.Singularity analysis and localized cohernet structures in(2+1)-dimensional generalized Korteweg-de Vries equations[J].J Math Phys,1994,35(9):4746-4756. [5] Radha R,Lakshmanan M.Dromion like structures in the(2+1)-dimensional breaking soliton equation[J].Phys Lett A,1995,197(1):7-12. [6] Radha R,Lakshmanan M.Exotic coherent structures in the(2+1)-dimensional long dispersive wave equation[J].J Math Phys,1997,38(2):292-299. [7] Radha R,Lakshmanan M.A new class of induced localized structures in the(2+1)-dimensional scalar nonlinear Schrdinger equations[J].J Phys A,1997,30:3229-3232. [8] Lou S Y,Dromion-like structures in a(3+1)-dimensional KdV-type equation[J].J Phys A,1996,29:5989-6001. [9] Ruan H Y,Lou S Y.Higher-dimensional dromion structures:Jimbo-Miwa-Kadomtsev-Petviashvili system[J].J Math Phys,1997,38(6):3123-3136. [10] Lou S Y.Generalized dromion solutions of the(2+1)-dimensional KdV equation[J].J Phys A,1995,28:7227-2732. [11] Lou S Y.On the dromion solutions of the potential breaking soliton equation[J].Commun Theor,1996,26(4):487-492. [12] Radha R,Lakshmanan M.Generalized dromions in the(2+1)-dimensional long dispersive wave(2LDW) and scalar nonlinear Schrdinger(NLS) equations[J].Chaos Solitons & Fractals,1999,10:1821-1824. [13] ZHANG Jie-fang.Generalized dromions of the(2+1)-dimensional nonlinear Schrdinger equations[J].Communcation in Nonlinear Science & Numerical Simulation,2001,6(1):50-53. [14] ZHANG Jie-fang.A simple soliton solution method for the(2+1)-dimensional long dispersive wave equations[J].Acta Physica Sinica(Overseas Edition),1999,8(2):326-330. [15] Lou S Y.On the coherent structures of the Nizhnik-Novikov-Veselov equation[J].Phys Lett A,2000,277:94-100. [16] Lou S Y,Ruan H Y.Revisitation of the localized excitations of the(2+1)-dimensional KdV equation[J].J Phys A:Math Gen,2001,34:305-316. [17] RUAN Hang-yu,CHEN Yi-xin.Ring solitions,dromions,breathers and instantons of the NLS equation[J].Acta Physica Sinica,2001,50(4):586-591. [18] WANG Ming-liang.The solitary wave solutions for variant Boussinesq equations[J].Phys Lett A,1995,199:169-172. [19] ZHANG Jie-fang.Multiple solitions of long liquid wave equations[J].Acta Physica Sinica,1999,47(9):1416-1420;Multi-soliton solutions of the dispersive long wave equation[J].Chin Phys Lett,1999,16(1):659-661. [20] ZHANG Jie-fang.Bcklund transformation and multisoliton-like solution of the(2+1)-dimensional dispersive long wave equations[J].Commun Theor Phys,2000,33(4):577-582. [21] FANG Een-gui,ZHANG Hong-qing.Solitary wave solution of nonlinear wave equqtion[J].Acta Physica Sinica,1997,46(1):1254-1259. [22] LOU Sen-yue,WU Xing-biao.Broer-Kaup systems from Darboux transformation related symmetry constraints of KP equation[J].Commun Theor Phys,1998,29(1):145-148.
##### 计量
• 文章访问数:  2122
• HTML全文浏览量:  96
• PDF下载量:  668
• 被引次数: 0
##### 出版历程
• 收稿日期:  2001-07-03
• 修回日期:  2001-11-28
• 刊出日期:  2002-05-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈