## 留言板

 引用本文: 黄德斌, 赵晓华. 具有单参数空间对称群的向量场及其约化[J]. 应用数学和力学, 2000, 21(2): 154-160.
Huang Debin, Zhao Xiaohua. The Vector Fields Admitting One-Parameter Spatial Symmetry Group and Their Reduction[J]. Applied Mathematics and Mechanics, 2000, 21(2): 154-160.
 Citation: Huang Debin, Zhao Xiaohua. The Vector Fields Admitting One-Parameter Spatial Symmetry Group and Their Reduction[J]. Applied Mathematics and Mechanics, 2000, 21(2): 154-160.

## 具有单参数空间对称群的向量场及其约化

###### 作者简介:黄德斌(1972~ ),男,博士.
• 中图分类号: O152.5;O175.12

## The Vector Fields Admitting One-Parameter Spatial Symmetry Group and Their Reduction

• 摘要: 对于保持某n-形式的n维向量场,应用Lie群的方法得到结论:当这类向量场有保持n-形式的空间单参数对称群时,可具体地构造出一个与该向量场无关的变换,它不仅使向量场约化掉一维,并且使得约化向量场保持相应的(n-1)-形式.特别,当n=3时,简单地得到了Mezie和Wiggins最近得到的重要结果.
•  [1] Olver P J.Applications of Lie Group to Differential Equations[M].New York:Springer-Verlag,1986. [2] Sen T,Tabor M.Lie symmetries of the Lorenz model[J].Physica D,1990,44(3):313～339. [3] Smale S.Topology and mechanics[J].Inv Math,1970,10(2):305～331. [4] Meyer K R.Symmetries and integrals in mechanics[A].In:M M Peixoto Ed.Dynamical Systems[C].New York:Academic Press,1973,259～272. [5] Marsden J E,Weinstein A.Reduction of symplectic manifolds with symmetry[J].Rep Math Phys,1974,5(1):121～130. [6] 李继彬,赵晓华,刘正荣.广义哈密顿系统理论及其应用[M].北京:科学出版社,1994. [7] Mezie J,Wiggins S.On the integrability and perturbation of three-dimensional fluid flows with symmetry[J].J Nonlinear Science,1994,4(1):157～194. [8] Ottino J M.The Kinematics of Mixing:Stretching,Chaos and Transprot[M].Cambridge:Cambridge University Press,1989. [9] 郭仲衡,陈玉明.具有不依赖于时间的不变量的三维常微分方程组的Hamilton结构[J].应用数学和力学,1995,16(4):283～288. [10] 张景炎.三维梯度共轭系统的全周期性[J].中国科学A辑,1983,13(5):426～437. [11] Marsden J E,Ratiu T S.Introduction to Mechanics and Symmetry[M].New York:Springer-Verlag,1994.
##### 计量
• 文章访问数:  2296
• HTML全文浏览量:  103
• PDF下载量:  725
• 被引次数: 0
##### 出版历程
• 收稿日期:  1997-01-20
• 修回日期:  1999-04-28
• 刊出日期:  2000-02-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈