## 留言板

 引用本文: 周又和, 王记增, 郑晓静. 小波伽辽金有限元法在梁板结构中的应用[J]. 应用数学和力学, 1998, 19(8): 697-706.
Zhou Youhe, Wang Jizeng, Zheng Xiaojing. Applications of Wavelet Galerkin FEM to Bending of Beam and Plate Structures[J]. Applied Mathematics and Mechanics, 1998, 19(8): 697-706.
 Citation: Zhou Youhe, Wang Jizeng, Zheng Xiaojing. Applications of Wavelet Galerkin FEM to Bending of Beam and Plate Structures[J]. Applied Mathematics and Mechanics, 1998, 19(8): 697-706.

## 小波伽辽金有限元法在梁板结构中的应用

• 中图分类号: O242;O342

## Applications of Wavelet Galerkin FEM to Bending of Beam and Plate Structures

• 摘要: 本文给出了基于小波尺度函数展开的高阶导数及其在伽辽金有限元法中有关联的导数乘积积分的计算格式,从而实现了将小波伽辽金法用于求解高于二阶导数微分方程边值问题的数值计算,使其在结构力学问题求解中成为可能.数值算例表明:本方法具有良好的计算精度.
•  [1] R.L.Motard and B.Joseph,Wa velet Applications in Chemical Engineering,Kluwer Academic Publishers,Boston(1994). [2] J.R.Williams and K.Amaratunga,Introduction to vavelets in engineering,Internat.J.Numer. Methods Engrg.,37(14)(1994),2365-2388. [3] I.Daubechies,Orthonormal bases of compactly supported wavelets,Comm.Pure Appl.Math.,41(7)(1988),909-996. [4] K.Amarat unga and J.William,Wavelet-Galerkin solution for one-dimensional partial differential equations,Internat.J.Numer.Methods in Engrg.,37(16)(1994),2703-2716. [5] J.Ko,A.J.Kurdila and M.Pilant,A class of wavelet-based finite element methods for computational mechanics,Proc.35th Structures,Structural Dynamics and Materials Conference,Hilton Head, South Carolina,May(1994),665-675. [6] 周又和、王记增,广义小波高斯积分法及其在微分方程中的应用,《第七届全国现代数学和力学会议文集》,上海大学出版社,上海(1997),464-467.

##### 计量
• 文章访问数:  2173
• HTML全文浏览量:  41
• PDF下载量:  676
• 被引次数: 0
##### 出版历程
• 收稿日期:  1997-01-03
• 修回日期:  1998-03-01
• 刊出日期:  1998-08-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈