留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动力系统实测数据的非线性混沌特性的判定*

马军海 陈予恕 刘曾荣

马军海, 陈予恕, 刘曾荣. 动力系统实测数据的非线性混沌特性的判定*[J]. 应用数学和力学, 1998, 19(6): 480-488.
引用本文: 马军海, 陈予恕, 刘曾荣. 动力系统实测数据的非线性混沌特性的判定*[J]. 应用数学和力学, 1998, 19(6): 480-488.
Ma Junhai, Chen Yushu, Liu Zengrong. Threshold Value for Diagnosis of Chaotic Nature of the Data Obtained in Nonlinear Dynamic Analysis[J]. Applied Mathematics and Mechanics, 1998, 19(6): 480-488.
Citation: Ma Junhai, Chen Yushu, Liu Zengrong. Threshold Value for Diagnosis of Chaotic Nature of the Data Obtained in Nonlinear Dynamic Analysis[J]. Applied Mathematics and Mechanics, 1998, 19(6): 480-488.

动力系统实测数据的非线性混沌特性的判定*

基金项目: * 国家自然科学基金资助项目(19672043)
详细信息
  • 中图分类号: O241;O175

Threshold Value for Diagnosis of Chaotic Nature of the Data Obtained in Nonlinear Dynamic Analysis

  • 摘要: 本文利用相位随机化的替代数据方法,给出了一个对动力系统实测时间序列数据的特性进行判定的方法计算结果表明:相位的充分随机化可提高判别的准确程度把此判据用于随机时序与非线性混沌时序所得的判据值有明显的差异.
  • [1] Henry D.I.Abarbanel,Prediction in chaotic nonlinear systems methods for timeseries with broad- band Fourier spectra,Phys.B,5(1991),1347-1375.
    [2] J.Luis Cabrera and F.Javier,Numerical analysis of transient behavior in the discrete random Logistic equation with delay,Phys.Lett.A,197(1995),19-24.
    [3] Peter Grassberger,Fininte sample corrections to entropy and dimension estimates,Phys.Lett.A,125(1988),369-373.
    [4] James Theiler,Stephen Eubank,etc.,Testing for nonlinearity in time series the method of surrogate data,Physica D,58(1992),77-94.
    [5] Dean Prichard,The correlation dimension of differenced data,Phys.Lett.A,191(1994),245-250.
    [6] James Theiler,Spurious dimension from correlation algorit hms applied to limited time series data,Phys.Rev.A,34(1986),2427-2432.
    [7] S.Rombouts,R.Keunen,I nvestigation of nonlinear structure in multichannel EEG,Phys.Lett.A,202(1995),352-358.
    [8] Mat thew B.Kennel and Strven I sabelle,Method to distinguish possible chaos from colored noise and to determine embedding parameters,Phys.Rev.Lett.A,46(1992),3111-3118.
    [9] P.E.Rapp and A.M.Albano,Filtered noise can mimic low-dimensional chaotic attractors,Phys.Rev.E,47(1993),2289-2297.
    [10] Dean Prichard Generating surrogate data for time series with several simultaneously measured variables,Phys.Rev.Lett.,191(1994),230-245.
    [11] P.E.Rapp and A.M.Albano,Phase-randomized surrogates can produce spurious identifications of non-random structure,Phys.Lett.A,192(1994),27-33.
    [12] M.Casdagli and Alistair Mees,Modeling chaotic motions of a string from experimental data,Phys.Rev.E,54(1992),303-328.
    [13] P.E.Rapp and A.M.Albano,Predicting chaotic time series,Phys.Rev.E,47(1993),2289-2297.
    [14] Eric J.Kost elich,Problems in estimating dynamics from data,Phys.D,58(1992),138-152.
    [15] S.J.Schiff and T.Chang,Information transport in temporal systems,Phys.Rev.Lett.A,67(1992),378-393.
    [16] James Theiler,Some comments on the correlation dimension of noise,Phys.Lett.A,155(1991),480-493.
    [17] J.Timonen and H.Koskinen,An improved estimator of dimension and some comments on providing confidence intervals,Geophys.Res.Lett.,20(1993),1527-1536.
    [18] D.Prichard and C.P.Price,Reconstructing attractors from scalar time series:A comparison of singular system and redundancy criteria,Geophys.Res.,20(1993),2817-2825.
  • 加载中
计量
  • 文章访问数:  1927
  • HTML全文浏览量:  45
  • PDF下载量:  729
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-09-20
  • 修回日期:  1998-03-01
  • 刊出日期:  1998-06-15

目录

    /

    返回文章
    返回