## 留言板

 引用本文: 胡平, 柳玉启, 郭威, 台风. 韧性金属大变形拟流动角点理论及应用*[J]. 应用数学和力学, 1996, 17(11): 1005-1011.
Hu Ping, Liu Yuqi, Guo Wei, Tai Feng. Quasi-Flow Corner Theory on Large Plastic Deformation of Ductile Metals and its Applications[J]. Applied Mathematics and Mechanics, 1996, 17(11): 1005-1011.
 Citation: Hu Ping, Liu Yuqi, Guo Wei, Tai Feng. Quasi-Flow Corner Theory on Large Plastic Deformation of Ductile Metals and its Applications[J]. Applied Mathematics and Mechanics, 1996, 17(11): 1005-1011.

## Quasi-Flow Corner Theory on Large Plastic Deformation of Ductile Metals and its Applications

• 摘要: 本文提出韧性金属弹塑性大变形拟流动角点理论(quasi-flow corner theory).该理论从塑性变形正交法则出发,将“模量衰减函数”及屈服面的尖点效应引入本构模型,从而实现了由正交法则本构模型向非正交法则本构模型以及从塑性加载向物理弹性却载的光滑过渡,使一般无角点各向异性硬化屈服函数与有角点硬化情形相结合成为可能。用于数值模拟各向异性金属薄板单向拉伸失稳与剪切带分析并与实验结果作比较,表明本文理论的有效性。
•  [1] 黄克智,《非线性连续介质力学》,第一版,北京大学、清华大学出版社(1989), 408-414 [2] S. Störm and J. R. Rice, Localized necking in thin sheet, J. Mech. Plys. Solids, 23 (1975), 421-441. [3] J. Christofferson and J. W. Hutehinson, A class of phenomenological corner theories of plasticity, J. Mech. Phys. Solids, 27 (1979), 465-487. [4] M. Gotoh, A class of plastic constitutive equations with vertex effect-I: General theory, Int. J. Solids Struct. 21, 11(1985), 1101-1116. [5] 胡平、连建设、李运兴,弹塑性有限变形的拟流动理论,力学学报,26 (1994), 275-283. [6] 胡平,塑性与超塑性金属材料应变局部化力学行为.J数值研究,吉林工业大学博士论文(1993). [7] P. Hu, J. Lian and J. W. Chen, Finite element numerical analysis of sheet metal under uniwial tension with n new field criterion, J. Mater,Proc. Tech., 31 (1992), 245-253. [8] F. Barlat and J. Lian. Plastic behavior and stretchability of sheet metals, Part I: A yield function for orthogonal sheets under planes stress conditions, Irat. J. Plasticity, 5(1989), 51-75. [9] J. C. Nagtegaal, D. M.Parks and J. R. Rice, On numerically accurate element solution in the fully plastic range, Comp. Mech. Eng., 4(1974), 153.

##### 计量
• 文章访问数:  1653
• HTML全文浏览量:  77
• PDF下载量:  514
• 被引次数: 0
##### 出版历程
• 收稿日期:  1995-07-24
• 刊出日期:  1996-11-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈