## 留言板

 引用本文: 胡宁, 张汝清. 一种迭代格式的有限元并行算法*[J]. 应用数学和力学, 1992, 13(4): 287-295.
Hu Ning, Zhang Ru-qing. An iterative Parallel Algorithm of Finite Element Method[J]. Applied Mathematics and Mechanics, 1992, 13(4): 287-295.
 Citation: Hu Ning, Zhang Ru-qing. An iterative Parallel Algorithm of Finite Element Method[J]. Applied Mathematics and Mechanics, 1992, 13(4): 287-295.

## An iterative Parallel Algorithm of Finite Element Method

• 摘要: 本文提出了一种求解有限元方程的迭代格式的并行算法.该方法在线性代数方程迭代解法的基础上,引进并行运算步骤;并且运用加权残数方法,通过选择适当的权函数,推导了该并行算法的有限元基本格式.该方法在西安交通大学BLXSI-6400并行计算机上程序实现.计算结果表明它能有效地提高运算速度,减少计算时间,是一种有效的求解大型结构有限元方程的并行算法.
•  [1] Farhat,Charbel and Edward Wilson,A parallel active column equation solver,Computers & Structures,28,2(1988),289-304. [2] Gochlich,D.,L.Komzsik and R.E.Fulton,Application of a parallel equation solver to static FEM problems,Computers & Structures,31,2(1989),121-129. [3] Carey,G.F.,E.Barragy,R.Mclay and M.Sharma,Element-by-element vector and parallel computation,Communications in Applied Numerical Method,4(1988),299-307. [4] King,R.B.and V.Sonnad,Implementation of an element-by-element solution algorithm for the finite element method on a coarse-grained parallel computer,Computer Methods in Applied Mechanics and Engineering,65(1987),47-59. [5] Hughes,T.J.R.,I.Levit and J.Winget,An element-by-element solution algorithm for problems of structural and solid mechanics,Computer Methods in Applied Mechanics and Engineering(1983),241-254. [6] Hageman,Louis A.and David M.Young,Appliedlterative Methods,Academic press(1982). [7] Krasnosel'skll,G.M.,et al.,Approximate Solution of Operator Equations,Woiters-Noordhoff Publishing,Groningen,The Netherlands(1972).

##### 计量
• 文章访问数:  1838
• HTML全文浏览量:  9
• PDF下载量:  741
• 被引次数: 0
##### 出版历程
• 收稿日期:  1990-10-11
• 刊出日期:  1992-04-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈