## 留言板

 引用本文: 郭友中, 刘曾荣, 江霞妹, 韩志斌. 高间Melnikov方法[J]. 应用数学和力学, 1991, 12(1): 19-30.
Guo You-zhong, Liu Zeng-rong, Jiang Xia-mei, Han Zhi-bin. Higher-Order Melnikov Method[J]. Applied Mathematics and Mechanics, 1991, 12(1): 19-30.
 Citation: Guo You-zhong, Liu Zeng-rong, Jiang Xia-mei, Han Zhi-bin. Higher-Order Melnikov Method[J]. Applied Mathematics and Mechanics, 1991, 12(1): 19-30.

## Higher-Order Melnikov Method

• 摘要: 本文把原有Melnikov方法推广到高阶情况.找到了二阶次谐Melnikov函数表达式,并且证明了在一定条件下可以用二阶次谐Melnikov函数来判定系统的次谐或超次谐的存在.
•  [1] Melnikov V. K., Trans..Moscov. Math. Soc. 12 (1963),1-56. [2] Guckenheimer J., P. J. Holmes,Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields, Springer-Veriay (1983). [3] Chow, S. N., J. K. Hale, and J. Mallet-Paret, J. Diff.Eq.37, 3(1980), 351-373. [4] Keener J. P,Study Appl.Math., 67, 1 (1982), 25-44. [5] 刘曾荣、姚伟国、朱照宣,应用数学和力学,7, 2 (1986), 103-108 [6] 钱敏、潘涛、刘曾荣,物理学报,36, 2(1987), 149-156. [7] Bareone A. and G. Paterno, Physics and Application of the Jorsephson Effect, Interscience Publication(1982). [8] Stoker J.J., Nonlinear Vibration in Mechanical and Electrical System, Interscience, New York(1950). [9] 钱敏、潘涛、沈文仙,平面Hamilton系统在周期小扰动下次调和解的存在性和稳定性.数学学报(待发表).

##### 计量
• 文章访问数:  2009
• HTML全文浏览量:  95
• PDF下载量:  517
• 被引次数: 0
##### 出版历程
• 收稿日期:  1989-11-30
• 刊出日期:  1991-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈