留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态规划中提出的一类泛函方程组公共解和重合解的存在性定理

张石生

张石生. 动态规划中提出的一类泛函方程组公共解和重合解的存在性定理[J]. 应用数学和力学, 1991, 12(1): 31-37.
引用本文: 张石生. 动态规划中提出的一类泛函方程组公共解和重合解的存在性定理[J]. 应用数学和力学, 1991, 12(1): 31-37.
Zhang Shi-sheng. Some Existence Theorems of Common and Coincidence Solutions for a Class of Functional Equations Arising in Dynamic Programming[J]. Applied Mathematics and Mechanics, 1991, 12(1): 31-37.
Citation: Zhang Shi-sheng. Some Existence Theorems of Common and Coincidence Solutions for a Class of Functional Equations Arising in Dynamic Programming[J]. Applied Mathematics and Mechanics, 1991, 12(1): 31-37.

动态规划中提出的一类泛函方程组公共解和重合解的存在性定理

基金项目: 国家自然科学基金

Some Existence Theorems of Common and Coincidence Solutions for a Class of Functional Equations Arising in Dynamic Programming

  • 摘要: 本文讨论了动态规划中提出的一类更一般的泛函方程组公共解和重合解的存在性问题.本文的结果不仅包含引文[6,7]中相应结果为特例,而且也对引文[2~5]在讨论动态规划的原理和模型时所提出的一类新型的泛函方程给出解的存在性条件.
  • [1] Bellman R. and E. S. Lee, Functional equations in dynamic programming, Aegoations Math.,17(1978). 1-18.
    [2] Wang Chung-lie, The principle and models of dynamic programming (Ⅱ), J. Math Anal. Appl.,135(1988). 268-283.
    [3] wang Chung-lie, The principle and models of dynamic programming(Ⅲ),J. Math. Anal.Appl., 135(1988). 284-296.
    [4] Wang Chung-lie,Theprinciple and models of dynamic programming (IV), J. Math Anal. Appl.,137(1989), 148-160.
    [5] Wang Chung-lie, The principle and models ofdynamic programming (V), J. Math. Anal. Appl.137 (1989), 161-167.
    [6] Bhakta. P. C. and Sumitra Mitra, Some existence theorems for functional equations arising in dynamic programming, J. Math.,Anal. Appl. 98(1984), 348-366
    [7] Baskaran, R. and P. V. Subrahmanyam, A note on the solution of a class of functional equations, Applicable Artalosis, 22(1986). 235-241.
    [8] 张石生,《不动点理论及应用》,重庆出版社(1984).
    [9] Chang Shih-sen (Zhang Shi-Sheng), On common fixed point theorem for a family of Φ-contraction mappings, Math. Japonica, 29(1984), 527-536.
    [10] Zhang Shi-sheng, Fixed point theorems for generalized Meir-Keeler type mappings, J. Sichuan Univ..Nutural Sci. Edition. 2(1983), 17-23.
  • 加载中
计量
  • 文章访问数:  1618
  • HTML全文浏览量:  63
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  1989-12-05
  • 刊出日期:  1991-01-15

目录

    /

    返回文章
    返回