留言板

 引用本文: 王有成, 王左辉. 分析各向异性板的各向同性化样条积分方程法[J]. 应用数学和力学, 1990, 11(9): 779-784.
Wang You-cheng, Wang Zuo-hui. Isotropicalized Spline Integral Equation Method for the Analysis of Anisotropic Plates[J]. Applied Mathematics and Mechanics, 1990, 11(9): 779-784.
 Citation: Wang You-cheng, Wang Zuo-hui. Isotropicalized Spline Integral Equation Method for the Analysis of Anisotropic Plates[J]. Applied Mathematics and Mechanics, 1990, 11(9): 779-784.

Isotropicalized Spline Integral Equation Method for the Analysis of Anisotropic Plates

• 摘要: 本文分别按Reissner理论和Kirchhoff理论导出各向导性板的各向同性化控制方程,并论证了它们间在正交各向异性简支矩形板中的相通性.在用样条积分方程法求解中采用的只是些简单的各向同性板基本解,在稀疏剖分下也能有良好的计算精度.对双参数弹性地基上的板也只需在板上虚载的取值上附加某些项而不致增加多大的工作量.
•  [1] Wu,B.C.and N.J.Altiero,A new numerical method for the analysis of anisotropic thin platebending problem,Com.Meth.Appl.Mech.Engng.,25(1981),343-353. [2] Wang,Y.C.et al.,SBEM for plate bending problems,Boundary Elements(Ed.Du Q.H.),Pergamon Press,Beijing(1986),427-436. [3] Wang,Y.C.et al.,SBEM for Reissner's plates and its application to foundation plates,Boundary ElementsⅨ(Ed.C.A.,Brebbia),Vol.2,Spring-Verlag(1987),111-125. [4] 王有成,Kirchhoff型板样条边界元,计算结构力学及其应用,3, 1 (1986),41-50. [5] Selvadurai,A.P.S.,Elastic Analysis of Soil-Foundation Interaction,Elsevier Scient.Publ.Comp.,Amsterdam(1979). [6] 列赫尼斯基,《各向异性板》,科学出版社(1983). [7] Timoshenko,S.,and S.Woinowsky-Krieger,Theory of Plates and Shells,McGraw-Hill(1959).

计量
• 文章访问数:  1331
• HTML全文浏览量:  26
• PDF下载量:  548
• 被引次数: 0
出版历程
• 收稿日期:  1989-07-14
• 刊出日期:  1990-09-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈