## 留言板

 引用本文: 康盛亮, 张安江. 无穷区域上非线性向量方程初值问题的解的渐近性质[J]. 应用数学和力学, 1987, 8(8): 669-688.
Kang Sheng-liang, Zhang An-jiang. Asymptotic Properties of Solutions of Nonlinear Vector Initial Value Problem on the Infinite Interval[J]. Applied Mathematics and Mechanics, 1987, 8(8): 669-688.
 Citation: Kang Sheng-liang, Zhang An-jiang. Asymptotic Properties of Solutions of Nonlinear Vector Initial Value Problem on the Infinite Interval[J]. Applied Mathematics and Mechanics, 1987, 8(8): 669-688.

## Asymptotic Properties of Solutions of Nonlinear Vector Initial Value Problem on the Infinite Interval

• 摘要: 本文研究无穷域上的初值问题:其中x,f∈Em,y,g∈En,实的小参数ε>0,0≤t<+∞,在gr(t)是非奇异的和其它适当的假设下,证明了存在一系列k+m*维流形{SR(ε)}∈Em+n,使得如果(ξ(ε),η(ε))∈SR(ε),方程(1.1)是正则退化的,并作出了解的R阶渐近展开式及其余项估计。
•  [1] Тихонов А.Н.,Снстемы днфференпиалъных уравнений,содержащие малые параметры при производных,Маmeмаmuческuu,73,31(1952),575-586. [2] Levin,J.J.and N.Levinson,Singular perturbations of nonlinear systems of differential equations and associated boundary layer equation,J.Rational Mech.Anal.,3(1954),247-270. [3] Hoppensteadt,F.Singular perturbations on the infinite interval,Trans.Amer.Math.Soc.,123,2(1966),521-535. [4] Hoppensteadt,F.,Stability in systems with parameters,J.math.Anal.Appl.18,1(1987).129-134. [5] Levin,J.J.,Singular perturbations of nonlinear systems of differential equations related to conditional stability,Duke.J Math.,23,4(1956).609-620. [6] Flatto,L.and N.Levinson,Periodic solutions of singular perturbed systems,J.Rational Mech.Anal.,4(1955),943-950. [7] Hoppensteadt,F.,Properties of solutions of ordinary differential equations with small parameter,Comm.Pure.Appl.Math:24(1971),807-840. [8] Coppel,W.A.,Dichotomies and reducibility,J.Diff.Equations 3(1967),500-521. [9] Chang,K.W.and W.A.Coppel,Singular perturbations of initial value problems over a finite interval,Arch.Rational Meth.Anal.,32,4(1969),268-280．

##### 计量
• 文章访问数:  1617
• HTML全文浏览量:  43
• PDF下载量:  499
• 被引次数: 0
##### 出版历程
• 收稿日期:  1986-06-06
• 刊出日期:  1987-08-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈