## 留言板

Fitzhugh神经传导方程的张弛振动解

 引用本文: 林常, 李继彬, 刘曾荣. Fitzhugh神经传导方程的张弛振动解[J]. 应用数学和力学, 1985, 6(12): 1079-1086.
Lin Chang, Li Ji-bin, Liu Zeng-rong. The Relaxational Oscillation Solution for Fitzhugh’s Nerve Conduction Equation[J]. Applied Mathematics and Mechanics, 1985, 6(12): 1079-1086.
 Citation: Lin Chang, Li Ji-bin, Liu Zeng-rong. The Relaxational Oscillation Solution for Fitzhugh’s Nerve Conduction Equation[J]. Applied Mathematics and Mechanics, 1985, 6(12): 1079-1086.

## The Relaxational Oscillation Solution for Fitzhugh’s Nerve Conduction Equation

• 摘要: 本文用匹配渐近法,计算了Fitzhugh神经传导方程张弛振动解的解析表达式、振动周期,给出了产生张弛振动的参数区域.
•  [1] Fitzhugh,R.,Thresholds and plateaus in the Hodgkin-Huxley nerve equations,J.Gen.Phys.,43(1960). [2] Troy,W.C.,Bifurcation phenomena in Fitzhugh's nerve conduction equation,J.Math.Anal.Appl.,54(1976),678-690. [3] Hsü,I.D.and N.D.Kazarinoff,An applicable Hopf bifurcation formula and instability of small periodic solutions of the Field-Noyes model,J.Math.Anal.Appl.,55(1976),61-89. [4] Hsü,I.D.,A higher order Hopf bifurcation formula and its application to Fitzhugh's nerve conduction equations,J.Math.Anal.Appl.,60,1(1977),47-57. [5] Hadeler,K.P.,etc.,Generation of the nervous impulse and periodic oscillations,Biol.Cybernet.,23(1976),211-218. [6] G(?)bber,F.and K.D.Willamowski,Liapunov approach to multiple Hopf bifurcation,J Math.Anal.Appl.,71(1979),333-350. [7] Negrini,P.and L.Salvadori,Attraction and Hopf bifurcation,Nonlinear Analysis,3,1(1979),87-99. [8] Okuda,M.,A new method of nonlinear analysis for threshold and shaping actions in transient states,Prog.Theory Phys.,66,1(1981),90-100．
##### 计量
• 文章访问数:  1792
• HTML全文浏览量:  90
• PDF下载量:  550
• 被引次数: 0
##### 出版历程
• 收稿日期:  1984-11-14
• 刊出日期:  1985-12-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈