## 留言板

 引用本文: 丛玉豪, 才佳宁, 项家祥. 求解时滞微分方程组的Rosenbrock方法的GP-稳定性[J]. 应用数学和力学, 2004, 25(12): 1285-1291.
CONG Yu-hao, CAI Jia-ning, XIANG Jia-xiang. GP-Stability of Rosenbrock Methods for System of Delay Differential Equation[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1285-1291.
 Citation: CONG Yu-hao, CAI Jia-ning, XIANG Jia-xiang. GP-Stability of Rosenbrock Methods for System of Delay Differential Equation[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1285-1291.

## 求解时滞微分方程组的Rosenbrock方法的GP-稳定性

###### 作者简介:丛玉豪(1965- ),男,山东人,教授,博士(联系人.Tel/Fax:+86-21-64321049;E-mail:yhcong@shnu.edu.cn).
• 中图分类号: O241.8

## GP-Stability of Rosenbrock Methods for System of Delay Differential Equation

• 摘要: 讨论了求解延时微分方程组的Rosenbrock方法的数值稳定性，分析了求解线性试验方程组的Rosenbrock方法的稳定性态，并证明了数值求解延时微分方程组的Rosenbrock方法是GP-稳定的充分必要条件是Rosenbrock方法是A-稳定的．
•  [1] Bellen A, Jackiewicz Z, Zennaro M.Stability analysis of one-step methods for neutral delay-differential equations[J].Numerische Mathematik,1988,52(3):605—619. [2] LIU Ming-zhu,Spijker M N.The stability of θ-methods in the numerical solution[J].IMA Journal of Numerical Analysis, 1990,10(1):31—48. [3] in't Hout K J.The stability of θ-methods for systems of delay differential equations[J].Annals of Numerical Mathematics,1994,1(3):323—334. [4] Koto T.A stability property of A-stable natural Runge-Kutta methods for systems of delay differential equations[J].BIT,1994,34(2):262—267. [5] HU Guang-da,Mitsui T.Stability of numerical methods for systems of nautral delay differential equations[J].BIT,1995,35(4):504—515. [6] Hairer E,Nrsett S P,Wanner G.Solving Ordinary Differential Equations[M].New York:Springer-Verlag,2000,103—117. [7] 曹学年,刘德贵,李寿佛.求解延迟微分方程的Rosenbrock方法的渐近稳定性[J].系统仿真学报, 2002,14(3):290—292. [8] Lambert J D.Computational Methods in Ordinary Differentail Equations[M].New York:John-Willy,1990. [9] KUANG Jiao-xun,TIAN Hong-jiong.The asymptotic behaviour of theoretical and numerical solutions for nonlinear differential systems with several delay terms[J].Journal of Shanghai Teachers University(Natural Sciences),1995,24(1):1—7. [10] in't Hout K J.A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations[J].BIT,1992,32(4):634—649. [11] 匡蛟勋.块θ方法的PL-稳定性[J].计算数学,1997,15(2):135—140. [12] YANG Biao,QIU Lin,KUANG Jiao-xun.The GPL-stability of Runge-Kutta methods for delay differential systems[J].J Comput Math,2000，18(1):75—82. [13] Huang C M, Li S F,Fu H Y,et al.Stability and error analysis of one-leg methods for nonlinear delay differential equations[J].Journal of Computational and Applied Mathematics,1999,103(2):263—279. [14] CHEN Li-rong, LIU De-gui.Combined RK-Rosenbrock methods and their stability[J].Mathematica Numerica Sinica,2000,22(3):319—332. [15] LI Shou-fu.Nonlinear stability of general linear methods[J].Journal of Computational Mathematics,1991,9(2):97—104. [16] Robert Piché.An L-stable Rosenbrock method for step-by-step time integration in structual dynamics[J].Computer Methods in Applied Mechanics and Engineering,1995,126(3／4):343—354. [17] SUN Geng.A class of single step methods with a large interval of absolute stability[J].J Comput Math,1991,9(2):185—193. [18] Barwell V K.Special stability problems for functional differential equations[J].BIT,1975，15(2)：130—135. [19] ZHANG Cheng-jian, ZHOU Shu-zi.Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations[J].Journal of Computational and Applied Mathematics,1997,85(2):225—237.

##### 计量
• 文章访问数:  2039
• HTML全文浏览量:  42
• PDF下载量:  944
• 被引次数: 0
##### 出版历程
• 收稿日期:  2003-04-22
• 修回日期:  2004-07-06
• 刊出日期:  2004-12-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈