## 留言板

 引用本文: 陈至达. 平面有限变形与转动的Moiré几何学[J]. 应用数学和力学, 1981, 2(6): 651-657.
Chen Zhi-da. The Moiré Geometry of Plane Finite Strain and Rotation[J]. Applied Mathematics and Mechanics, 1981, 2(6): 651-657.
 Citation: Chen Zhi-da. The Moiré Geometry of Plane Finite Strain and Rotation[J]. Applied Mathematics and Mechanics, 1981, 2(6): 651-657.

## The Moiré Geometry of Plane Finite Strain and Rotation

• 摘要: 本文论证有限变形理论[12]中的拖带坐标系描述法和近年来发展的实验应变分析的Moiré方法,在数学基础上是同一.因此从Moiré几何学进一步肯定文[12]提出几何场论的重要实用意义。
•  [1] Hencky,H.,Die Bewegungsgleichungen beim nichtstationaren fliessen plastischer Massen,ZAMM,5(1925),144-146. [2] Brillouin,L.,Les tenseurs en Mecanique et en Elasticite,Paris,(1938). [3] Synge,J.L.and Chien,W.Z.,The intrinsic theory of elastic shells and plates,Theodore von Karman Aniversary volume,(1941). [4] Green,A.E.and Zerna.W.,Theory of elasticity in general coordinates in the mechanics of continuous media,Phil.Mag.,47(1950),313-336. [5] Lodge,A.S.,Body Tensor Fields in Continuum Mechanics,Academic Press,(1974). [6] Biot,M.A.,Mechanics of Incremental Deformation,John Wiley,(1965). [7] Swainger,K.H.,Saint-Venant's and Filon's finite strain definitions nonlinear in displacement gradients,Nature,164(1949),53. [8] Brinkmann,G.,Uber die nichtlinearen Glieder in Verschielungs-Dehnungsgesetz,Ing.Arch.32(1963),77-80. [9] John,F.,Rotation and strain,Commu.Pure and Appl.Math.,14(1961),391-413. [10] Park,V.J.and Durelli,A.J.,On the definition of strain and their use in large-strain analysis,Bxp.Mech.,7． (1967),279-280. [11] Durelli,A.J.,Visual representation of the kinematics of the continuum,Second SESA Int.Cong,on Exp.Mech.,The Willian M.Murray Lecture,(1965). [12] 陈至达,连续介质有限变形力学几何场论,力学学报.2期(1979), 107-117. [13] 陈至达,实验应力分析补充讲义.中国矿业学院北京研究生部,(1980). [14] 姜复本,Moiré方法(中文),清华大学工程力学系印,(1980). [15] 陈至达.固体在温度影响下的大变形测量,中国矿业学院研究报告,(1964).

##### 计量
• 文章访问数:  1331
• HTML全文浏览量:  6
• PDF下载量:  433
• 被引次数: 0
##### 出版历程
• 收稿日期:  1981-01-20
• 刊出日期:  1981-12-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈