## 留言板

 引用本文: 朱兆祥, 李永池, 王肖钧. 爆炸作用下钢板层裂的数值分析[J]. 应用数学和力学, 1981, 2(4): 353-368.
Chu Chao-hsiang, Li Yong-chi, Wang Xiao-jun. Numerical Analysis of the Spallation of Steel Target under the Explosive Loading[J]. Applied Mathematics and Mechanics, 1981, 2(4): 353-368.
 Citation: Chu Chao-hsiang, Li Yong-chi, Wang Xiao-jun. Numerical Analysis of the Spallation of Steel Target under the Explosive Loading[J]. Applied Mathematics and Mechanics, 1981, 2(4): 353-368.

## Numerical Analysis of the Spallation of Steel Target under the Explosive Loading

• 摘要: 用一维运动模型对高能炸药在钢板表面接触爆炸时钢板中应力波的传播及其在钢板自由面上反射后引起的层裂现象进行了数值分析,并和前几年在我国进行的实验结果作了比较.发现当钢板采用流体弹塑性模型,并采用损伤积累层裂准则的情况下,计算所得的主裂片厚度是和实验结果合理地符合的.提出了一个计算主裂片厚度的近似公式,对实验中出现的多层的呈云母状结构的次裂片现象也作出了较满意的解释.
•  [1] Rinehart,J.S.,Some quantitative data bearing on the scabbing of metals under explosive attack,J.Appl.Phys.22(1951) 555. [2] Whiteman,P.,Preliminary report on the effect of stress rate on the dynamic fracture of steel,Brass and Aluminium,AWRE-SWAN-10/61(1962). [3] Skidmore,I.C.,Introduction to shock waves in solids,Appl.Mater.Res.4(1965) 131. [4] Breed,B.R.et al,Technique for the determination of dynamic tensile strength characteristics,J.Appl.Phys.38(1967) 3271. [5] Thurson,R.S.and Mudd,W.L.,Spallation Criteria for Numerical Computation,LA-4013(1968). [6] Davison,L.,Stevens,A.L.,Continuum measures of spall damage,J.Appl.Phys.43(1972) 988. [7] Butcher,B.M.,Barker,L.M.,Murson,D.L.and Lundergan,C.D.,Influeuce of stress history on time-dependent spall in metals,AIAA J.2(1964) 977. [8] Tuler,F.R.and Butcher,B.M.,A criterion for the time-dependence of dynamic fracture,Inter.J.Fra.Mech.4(1968) 431. [9] Seaman,S.,Fracture and fragmentation under shock loading,Shock and Vibration Computer Programs,ed.by Walter,et al.(1975) 563. [10] 科大,东机:关于静碎甲实验的初步总结.(1977年3月). [11] 徐彬等,"炸药接触爆炸下钢板的层裂问题"中国第一次爆炸力学学术讨论会上的报告.(1977年11月) [12] 朗道,连续介质力学,人民教育出版社,1960年487页. [13] Mader,C.L.,Detonation Properties of Condensed Explosives Computed Using the BKW Equation of State,LA-2900(1963). [14] 段祝平,孙琦清,杨大光,田兰桥,褚瑶,高应变率下金属动力学性能的实验与理论研究,力学进展1980年第10期,1-16页. [15] von Neumann,J.and Richtmyet,R.D.,A method of the numerical calculation of hydrodynamic Shocks,J.Appl,Phys.21(1950) 232. [16] Wilkins,M.L.,Calculation of Elastic-Plastic Flow,LA-7322(rev.)(1969). [17] Richtmyer,R.D.,初值问题的差分方法,科学出版社,1966年178页. [18] Mcqueen,R.G.,Marsh,S.P.,Ultimate yield strength of copper,J.Appl.Phys.33(1962) 654.
##### 计量
• 文章访问数:  1808
• HTML全文浏览量:  86
• PDF下载量:  894
• 被引次数: 0
##### 出版历程
• 收稿日期:  1980-07-05
• 刊出日期:  1981-08-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈