## 留言板

 引用本文: 李健全, 张娟, 马知恩. 一类带有一般接触率和常数输入的流行病模型的全局分析[J]. 应用数学和力学, 2004, 25(4): 359-367.
LI Jian-quan, ZHANG Juan, MA Zhi-en. Global Analysis of Some Epidemic Models With General Contact Rate and Constant Immigration[J]. Applied Mathematics and Mechanics, 2004, 25(4): 359-367.
 Citation: LI Jian-quan, ZHANG Juan, MA Zhi-en. Global Analysis of Some Epidemic Models With General Contact Rate and Constant Immigration[J]. Applied Mathematics and Mechanics, 2004, 25(4): 359-367.

## 一类带有一般接触率和常数输入的流行病模型的全局分析

###### 作者简介:李健全(1965- ),男,山西万荣人,副教授,博士(联系人+86-29-84397993;Fax:+86-29-83237910;E-mail:jianq-li@263.net).
• 中图分类号: O175.12

## Global Analysis of Some Epidemic Models With General Contact Rate and Constant Immigration

• 摘要: 借助极限系统理论和构造适当的Liapunov函数，对带有一般接触率和常数输入的SIR型和SIRS型传染病模型进行讨论．当无染病者输入时，地方病平衡点存在的阈值被找到A·D2对相应的SIR模型，关于无病平衡点和地方病平衡点的全局渐近稳定性均得到充要条件;对相应的SIRS模型，得到无病平衡点和地方病平衡点全局渐近稳定的充分条件．当有染病者输入时，模型不存在无病平衡点．对相应的SIR模型，地方病平衡点是全局渐近稳定的；对相应的SIRS模型，得到地方病平衡点全局渐近稳定的充分条件．
•  [1] Kermack W O,McKendrick A G.Contributions to the mathematical theory of epidemics—Part 1[J].Proc Roy Soc London Ser A,1927,115(3):700—721. [2] Mena-Lorca J,Hethcote H W.Dynamic models of infectious diseases as regulators of population sizes[J].J Math Biol,1992,30(4):693—716. [3] Li J,Ma Z.Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J].Math Comput Modelling,2002,35(11/12):1235—1243. [4] Heesterbeck J A P,Metz J A J.The saturating contact rate in marriage-and epidemic models[J].J Math Biol,1993,31(2):529—539. [5] Brauer F,Van den Driessche P.Models for transmission of disease with immigration of infectives[J].Math Biosci,2001,171(2):143—154. [6] Han L,Ma Z,Hethcote H W.Four predator prey models with infectious diseases[J].Math Comput Modelling,2001,34(7/8):849—858. [7] LaSalle J P.The Stability of Dynamical System[M].New York:Academic Press,1976. [8] Jeffries C,Klee V,Van den Driessche P.When is a matrix sign stable?[J].Canad J Math,1977,29(2):315—326.
##### 计量
• 文章访问数:  2926
• HTML全文浏览量:  129
• PDF下载量:  809
• 被引次数: 0
##### 出版历程
• 收稿日期:  2002-08-05
• 修回日期:  2003-09-05
• 刊出日期:  2004-04-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈