## 留言板

M.禹儒索一. 第二梯度流体的蠕变流和热传导相似解[J]. 应用数学和力学, 2004, 25(4): 425-432.
 引用本文: M.禹儒索一. 第二梯度流体的蠕变流和热传导相似解[J]. 应用数学和力学, 2004, 25(4): 425-432.
Muhammet Yürüsoy. Similarity Solutions for Creeping Flow and Heat Transfer in Second Grade Fluid[J]. Applied Mathematics and Mechanics, 2004, 25(4): 425-432.
 Citation: Muhammet Yürüsoy. Similarity Solutions for Creeping Flow and Heat Transfer in Second Grade Fluid[J]. Applied Mathematics and Mechanics, 2004, 25(4): 425-432.

## 第二梯度流体的蠕变流和热传导相似解

###### 作者简介:M.禹儒索一.Tel:90-272-2281311(217);E-mail:yurusoy@aku.edu.tr.
• 中图分类号: O357；O152.9

## Similarity Solutions for Creeping Flow and Heat Transfer in Second Grade Fluid

• 摘要: 给出了在笛卡儿坐标系中，忽略惯性的缓慢流动的二维运动方程和二阶梯度流体的传热方程．当Re1时，若从运动方程中简单地省略惯性项，则结果方程的解仍然近似有效．事实上，从无量纲的动量和能量方程也可导出这一结论．利用李群分析，知道求得的方程是对称的．李代数包括4个有限参数和一个无限参数组成的李群变换，其中一个是比例对称变换，另一个是平移变换．利用对称性求得两种不同形式的解．利用x和y坐标的平移，给出了指数形式的精确解．对于比例对称变换，更多地涉及到常微分方程，只能给出级数形式的近似解，最后讨论了某些边值问题．
•  [1] Tanner R I.Plane creeping flow of incompressible second order fluids[J].Phys Fluids,1996,9:1246. [2] Huilgol R R.On uniqueness and non-uniqueness in the plane creeping flows of second order fluids[J].Soc Ind Appl,1973,24:226. doi: 10.1137/0124023 [3] Fosdick R L,Rajagopal K R.Uniqueness and drag for fluids of second grade in steady motion[J].Internat J Non-Linear Mech,1978,13:131. [4] Rajagopal K R.On the creeping flow of the second-order fluids[J].J Non-Newtonian Fluid Mech,1984,15:239. [5] Dunn J E,Rajagopal K R.Fluids of differential type:critical review and thermodynamic analysis[J].Internat J Engng Sci,1995,33:689. [6] Bourgin P,Tichy J A.The effect of an additional boundary condition on the plane creeping flow of a second-order fluid[J].Internat J Non-Linear Mech,1989,24:561. [7] Galdi G P,Rajagopal K R.Slow motion of a body in a fluid of second grade[J].Internat J Engng Sci,1997,35:33. [8] Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer,1989. [9] Dunn J E,Fosdick R L.Thermodynamics stability and boundedness of fluids complexity 2 and fluids of second grade[J].Arch Rational Mech Anal,1971,56:191. [10] Rajagopal K R.On the boundary conditions for fluids of the differential type[A].In:Navier-Stokes Equations and Related Nonlinear Problems[C].New York:Plenum Press,1994.
##### 计量
• 文章访问数:  2559
• HTML全文浏览量:  131
• PDF下载量:  666
• 被引次数: 0
##### 出版历程
• 收稿日期:  2002-10-31
• 刊出日期:  2004-04-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈