## 留言板

 引用本文: 唐锦, 汤杰, 王元. 基流风速包含垂直变化时的三维无旋Non-Boussinesq流的地形重力波拖曳解[J]. 应用数学和力学, 2007, 28(3): 288-296.
TANG Jin-yun, TANG Jie, WANG Yuan. Analytical Investigation on the 3D Non-Boussinesq Mountain Wave Drag for Wind Profiles With Vertical Variations[J]. Applied Mathematics and Mechanics, 2007, 28(3): 288-296.
 Citation: TANG Jin-yun, TANG Jie, WANG Yuan. Analytical Investigation on the 3D Non-Boussinesq Mountain Wave Drag for Wind Profiles With Vertical Variations[J]. Applied Mathematics and Mechanics, 2007, 28(3): 288-296.

## 基流风速包含垂直变化时的三维无旋Non-Boussinesq流的地形重力波拖曳解

###### 作者简介:唐锦赟(1981- ),男,江苏人,博士;王元(1959- ),男,江苏人,教授,博士生导师(联系人.E-mail:yuanasm@netra.nju.edu.cn).
• 中图分类号: O175.8；O351.2

## Analytical Investigation on the 3D Non-Boussinesq Mountain Wave Drag for Wind Profiles With Vertical Variations

• 摘要: 用WKB近似方法建立了表达三维地形重力波拖曳的解析Non-Boussinesq扰动模型，其中在大Richardson数条件下给出了（静力和非静力模型的）重力波拖曳及其地表扰动气压的二阶表达式．通过针对经典的理想化三维圆钟型山体的一个算例证明，当基流风速切变为线性时，重力波拖曳随着切变的增强而减弱；并且前向垂直切变（forward-shear，风速随高度增加）所对应的重力波拖曳比反向切变（backward-shear，风速随高度减小）所对应的重力波拖曳减弱得更快．这种现象与模型是否采用静力近似无关．
•  [1] Blumen W.A random model of momentum flux by mountain waves[J].Geofys Publ,1965,26(2):1-33. [2] Teixeira M A C,Miranda P M A,Valente M R,et al.An analytical model of mountain wave drag for wind profiles with shear and curvature[J].J Atmos Sci,2004,61(9):1040-1054. [3] Queney P. The problem of air flow over mountains: a summary of theoretical studies[J].Bull Amer Meteor Soc,1948,29(4):16-26. [4] Scorer R S.Theory of waves in the lee of mountains[J].Quart J Roy Meteor Soc,1949,75(2):41-56. [5] Smith R B.The influence of mountains on the atmosphere[J].Advances in Geophysics,1979,21(3):87-230. [6] Smith R B.Linear theory of stratified hydrostatic flow past an isolated mountain[J].Tellus,1980,32(4):348-364. [7] Bretherton F P.Momentum transport by gravity waves[J].Quart J Roy Meteor Soc,1969,95(404):213-243. [8] 布赖姆 E O.快速傅立叶变换[M].柳群 译.上海：上海科学技术出版社，1979，72-75. [9] Drazin P G.On the steady flow of a fluid of variable density past an obstacle[J].Tellus,1961,13(2):239-251. [10] Landau L D,Lifshitz E M.Fluid Mechanics, 2nd Edition[M].Oxford:Butterworth-Heinemann,Pergamon Press.1987,3-4,29. [11] Booker J,Bretherton F P.The critical layer for internal gravity waves in a shear flow[J].J Fluid Mech,1967,27(3):513-539. [12] Miles J W.On the stability of heterogeneous shear flows[J].J Fluid Mech,1961,10(4):496-509. [13] Durran D R.Improving the anelastic approximation[J].J Atmos Sci,1989,46(11):1453-1461.
##### 计量
• 文章访问数:  2505
• HTML全文浏览量:  118
• PDF下载量:  608
• 被引次数: 0
##### 出版历程
• 收稿日期:  2005-10-18
• 修回日期:  2006-10-31
• 刊出日期:  2007-03-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈