留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合隔振体系多目标优化研究

黄伟 徐建 朱大勇 胡明祎 卢剑伟 卢坤林

黄伟, 徐建, 朱大勇, 胡明祎, 卢剑伟, 卢坤林. 复合隔振体系多目标优化研究[J]. 应用数学和力学, 2016, 37(9): 924-935. doi: 10.21656/1000-0887.360238
引用本文: 黄伟, 徐建, 朱大勇, 胡明祎, 卢剑伟, 卢坤林. 复合隔振体系多目标优化研究[J]. 应用数学和力学, 2016, 37(9): 924-935. doi: 10.21656/1000-0887.360238
HUANG Wei, XU Jian, ZHU Da-yong, HU Ming-yi, LU Jian-wei, LU Kun-lin. Multi-Objective Optimization of Composite Vibration Isolation Systems[J]. Applied Mathematics and Mechanics, 2016, 37(9): 924-935. doi: 10.21656/1000-0887.360238
Citation: HUANG Wei, XU Jian, ZHU Da-yong, HU Ming-yi, LU Jian-wei, LU Kun-lin. Multi-Objective Optimization of Composite Vibration Isolation Systems[J]. Applied Mathematics and Mechanics, 2016, 37(9): 924-935. doi: 10.21656/1000-0887.360238

复合隔振体系多目标优化研究

doi: 10.21656/1000-0887.360238
基金项目: 国家自然科学基金(51078123;51179043)
详细信息
    作者简介:

    黄伟(1988—),男,博士(通讯作者. E-mail: huangweiac@126.com).

  • 中图分类号: TU112.4+1;O328

Multi-Objective Optimization of Composite Vibration Isolation Systems

Funds: The National Natural Science Foundation of China(51078123; 51179043)
  • 摘要: 传统动力设备的隔振,往往仅着眼于设备本身的振动抑制,而将其连接基础视为绝对刚性,忽略其振动.考虑“设备隔振器薄板基础”为复合隔振体系,设备通过4点安置在薄板上;并基于机械四端连接特性,推导了力的传递率.随后,在固支薄板振动分析的基础上,引入功率流理论,提出了多目标优化策略:使多点安置的设备隔振体系输入薄板的峰值功率流最小;与此同时,使动力设备尽可能地趋于均匀振动,以降低设备振动损害.多目标粒子群优化算法具有参数设置少,收敛快,优化能力强等优点,且可基于Pareto支配获得最优解.该研究将设备隔振、薄板振动、功率流传递以及智能多目标优化技术结合,固支薄板振动理论作为切入点为优化策略创造了有利条件.多目标粒子群优化算法的应用亦为工程隔振及振动控制提供了新思路.
  • [1] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. GB 50463—2008: 隔振设计规范[S]. 北京: 中国计划出版社, 2009.(Ministry of Housing and Urban-Rural Development of People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB 50463—2008: Code for design of vibration isolation[S]. Beijing: China Planning Press, 2009.(in Chinese))
    [2] 魏燕定, 赖小波, 陈定中, 沈国强. 两级振动隔振系统参数优化设计[J]. 浙江大学学报(工学版), 2006,40(5): 893-896.(WEI Yan-ding, LAI Xiao-bo, CHEN Ding-zhong, SHEN Guo-qiang. Optimal parameters design of two-stage vibration isolation system[J]. Journal of Zhejiang University(Engineering Science),2006,40(5): 893-896.(in Chinese))
    [3] 李志强, 陈树勋, 韦齐峰. 汽车动力总成悬置系统振动解耦计算方法研究[J]. 计算力学学报, 2014,31(2): 187-191.(LI Zhi-qiang, CHEN Shu-xun, WEI Qi-feng. Study on calculating method of vibration decoupling for automotive powertrain mounting system[J]. Chinese Journal of Computational Mechanics,2014,31(2): 187-191.(in Chinese))
    [4] Amabili M, Carra S. Experiments and simulations for large amplitude vibrations of rectangular plates carrying concentrated masses[J]. Journal of Sound and Vibration,2012,331(1): 155-166.
    [5] Li S, Yuan H. Green quasifunction method for free vibration of clamped thin plates[J]. Acta Mechanica Solida Sinica,2012,25(1): 37-45.
    [6] Arenas J P. On the vibration analysis of rectangular clamped plates using the virtual work principle[J]. Journal of Sound and Vibration,2003,266(4): 912-918.
    [7] 马永彬, 张亚辉, 曾耀祥. 板列弯曲振动及功率流分析的辛空间波传播方法[J]. 应用数学和力学, 2014,35(8): 838-849.(MA Yong-bin, ZHANG Ya-hui, ZENG Yao-xiang. Bending vibration and power flow analysis of plate assemblies in the symplectic space[J]. Applied Mathematics and Mechanics,2014,35(8): 838-849.(in Chinese))
    [8] Goyder H G D, White R G. Vibrational power flow from machines into built-up structures—part I: introduction and approximate analyses of beam and plate-like foundations[J]. Journal of Sound and Vibration,1980,68(1): 59-75.
    [9] Goyder H G D, White R G. Vibrational power flow from machines into built-up structures—part II: wave propagation and power flow in beam-stiffened plates[J]. Journal of Sound and Vibration,1980,68(1): 77-96.
    [10] Goyder H G D, White R G. Vibrational power flow from machines into built-up structures—part III: power flow through isolation systems[J]. Journal of Sound and Vibration,1980,68(1): 97-117.
    [11] Pinnington R J. Vibrational power transmission to a seating of a vibration isolated motor[J]. Journal of Sound and Vibration,1987,118(3): 515-530.
    [12] Abido M A, Al-Ali N A. Multi-objective optimal power flow using differential evolution[J]. Arabian Journal for Science and Engineering,2012,37(4): 991-1005.
    [13] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]// Micro Machine and Human Science, Proceedings of the Sixth International Symposium on IEEE,1995: 39-43.
    [14] Shi Y, Eberhart R. A modified particle swarm optimizer[C]//IEEE World Congress on Computational Intelligence,1998: 69-73.
    [15] Coello C C A, Lechuga M S. MOPSO: a proposal for multiple objective particle swarm optimization[C]// Proceedings of the 〖STBX〗2002 Congress on IEEE,2002,2: 1051-1056.
    [16] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2): 182-197.
    [17] Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization[C]//Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms,1987: 41-49.
    [18] 王全娟, 陈家义, 许华. 基于功率流方法的复杂柔性耦合系统被动综合最优控制[J]. 机械工程学报, 2001,37(8): 32-36.(WANG Quan-juan, CHEN Jia-yi, XU Hua. Optimum control of complex flexible coupling system based on power flow[J].Chinese Journal of Mechanical Engineering,2001,37(8): 32-36.(in Chinese))
    [19] 严济宽. 机械振动隔离技术[M]. 上海: 上海科学技术文献出版社, 1985.(YAN Ji-kuan. Mechanical Vibration Isolation Technology [M]. Shanghai: Shanghai Scientific and Technological Literature Press, 1985.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1087
  • HTML全文浏览量:  126
  • PDF下载量:  1104
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-26
  • 修回日期:  2016-05-13
  • 刊出日期:  2016-09-15

目录

    /

    返回文章
    返回