留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速运动裂纹扩展和分叉现象的近场动力学数值模拟

谷新保 周小平 徐潇

谷新保, 周小平, 徐潇. 高速运动裂纹扩展和分叉现象的近场动力学数值模拟[J]. 应用数学和力学, 2016, 37(7): 729-739. doi: 10.21656/1000-0887.360310
引用本文: 谷新保, 周小平, 徐潇. 高速运动裂纹扩展和分叉现象的近场动力学数值模拟[J]. 应用数学和力学, 2016, 37(7): 729-739. doi: 10.21656/1000-0887.360310
GU Xin-bao, ZHOU Xiao-ping, XU Xiao. Numerical Simulation of High-Speed Crack Propagating and Branching Phenomena[J]. Applied Mathematics and Mechanics, 2016, 37(7): 729-739. doi: 10.21656/1000-0887.360310
Citation: GU Xin-bao, ZHOU Xiao-ping, XU Xiao. Numerical Simulation of High-Speed Crack Propagating and Branching Phenomena[J]. Applied Mathematics and Mechanics, 2016, 37(7): 729-739. doi: 10.21656/1000-0887.360310

高速运动裂纹扩展和分叉现象的近场动力学数值模拟

doi: 10.21656/1000-0887.360310
基金项目: 重庆市教委科学技术研究项目(KJ100417);交通运输部应用基础研究项目(2014329814070)
详细信息
    作者简介:

    谷新保(1980—),男,博士(E-mail: 15823405952@163.com);周小平(1970—),男,教授,博士生导师(通讯作者. E-mail: zhouxiaopinga@sina.com).

  • 中图分类号: O317;V214.9

Numerical Simulation of High-Speed Crack Propagating and Branching Phenomena

Funds: The National Basic Research Program of China (973 Program)(2014CB046903);The National Natural Science Foundation of China(51325903;51279218)
  • 摘要: 首先介绍了近场动力学的基本理论,然后以两个实例分析了高速运动裂纹的扩展及分叉现象.分析了近场动力学参数(邻域半径、相邻节点距)及外部参数(材料的弹性模量、密度、温度改变量)等对裂纹分叉的速度和角度的影响并进行了对比分析,数值结果表明:随着邻域半径的增大,裂纹传播速度逐渐减少而裂纹分叉角度逐渐增加;随着相邻节点间距的增加,裂纹的传播速度逐渐减少而裂纹分叉角度也逐渐减少;裂纹分叉长度偏向于弹性模量小和密度大的材料;裂纹传播速度随着弹性模量差值的增大而增大,随着密度差值的减小而增大,同时随着外界温度改变量的增大而减少.近场动力学能自发地模拟裂纹扩展和分叉,不需要借助任何外部准则,不需要预先设置裂纹扩展路径,因此它具有天然的优势.
  • [1] 蒋持平, 邹振祝, 王铎. 高速运动裂纹的分叉角问题[J]. 固体力学学报, 1991,12(3): 269-273.(JIANG Chi-ping, ZOU Zhen-zhu, WANG Duo. Bifurcation angles of a crack propagating at a high speed[J].Acta Mechanica Solida Sinica,1991,〖STHZ〗 12(3): 269-273.(in Chinese))
    [2] Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46(1): 131-150.
    [3] 高大鹏, 刘天宇, 王天娇, 袁贺, 王东, 李勇, 刘英波. 非常规井数值模拟技术研究进展与发展趋势[J]. 应用数学和力学, 2015,36(12): 1238-1256.(GAO Da-peng, LIU Tian-yu, WANG Tian-jiao, YUAN He, WANG Dong, LI Yong, LIU Ying-bo. Research progress and development trend of numerical simulation technology for unconventional wells[J].Applied Mathematics and Mechanics,2015,36(12): 1238-1256.(in Chinese))
    [4] Wagner G J, Mos N, Liu W K, Belytschko T. The extended finite element method for rigid particles in Stokes flow[J].International Journal for Numerical Methods in Engineering,2001,51(3): 293-313.
    [5] Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments[J].Computer Methods in Applied Mechanics and Engineering,1996,139(1/4): 3-47.
    [6] Libersky L D, Petsehek A G. Smooth particle hydrodynamics with strength of materials[C]//TreaseH E, FrittsM F, Crowley W P, ed.Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, Method Lecture Notes in Physics,1990,395: 248-257.
    [7] Izumi S, Katake S. Molecular dynamics study of solid deformation[J].Transactions of the Japan Society of Mechanical Engineers A,1993,59(557): 263-267.
    [8] Silling S A, Bobaru F. Peridynamic modeling of membranes and fibers[J].International Journal of Non-Linear Mechanics,2005,40(2/3): 395-409.
    [9] Silling S A. Dynamic fracture modeling with a meshfree peridynamic code[C]//Bathe K J, ed.Computational Fluid and Solid Mechanics 〖STBX〗2003.Amsterdam: Elsevier, 2003: 641-644.
    [10] 黄丹, 章青, 乔丕忠, 沈峰. 近场动力学方法及其应用[J]. 力学进展, 2010,4(2): 448-459.(HUANG Dan, ZHANG Qing, QIAO Pei-zhong, SHEN Feng. A review on peridynamics (PD) method and its applications[J].Advances Mechanics,2010,4(2): 448-459.(in Chinese))
    [11] Silling S A. Reformulation of elasticity theory for discontinuities and long-range forces[J].Journal of the Mechanics and Physics of Solids,2000,48(1): 175-209.
    [12] Silling S A, Askari E. Peridynamic modeling of impact damage[C]//Moody F J, ed.ASME/JSME 2004 Pressure Vessels and Piping Conference.New York: American Society of Mechanical Engineers, 2004: 197-205.
    [13] Gerstle W, Sau N, Silling S. Peridynamic modeling of concrete structures[J].Nuclear Engineering and Design,2007,237(12/13): 1250-1258.
    [14] Ha Y D, Bobaru F. Characteristics of dynamic brittle fracture captured with peridynamics[J].Engineering Fracture Mechanics,2011,78(6): 1156-1168.
    [15] Hu W, Ha Y D, Bobaru F. Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites[J]. Computer Methods in Applied Mechanics and Engineering,2012,217/220: 247-261.
    [16] Belytschko T, CHEN Hao, XU Jing-xiao, Zi G. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment[J].International Journal for Numerical Methods in Engineering,2003,58(12): 1873-1905.
  • 加载中
计量
  • 文章访问数:  988
  • HTML全文浏览量:  20
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-05
  • 修回日期:  2015-12-14
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回