留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室内细颗粒物碰撞模型及碰撞结果讨论

王秀娟 李灿

王秀娟, 李灿. 室内细颗粒物碰撞模型及碰撞结果讨论[J]. 应用数学和力学, 2016, 37(7): 766-774. doi: 10.21656/1000-0887.360349
引用本文: 王秀娟, 李灿. 室内细颗粒物碰撞模型及碰撞结果讨论[J]. 应用数学和力学, 2016, 37(7): 766-774. doi: 10.21656/1000-0887.360349
WANG Xiu-juan, LI Can. The Collision Model for Indoor Fine Particles and the Collision Results[J]. Applied Mathematics and Mechanics, 2016, 37(7): 766-774. doi: 10.21656/1000-0887.360349
Citation: WANG Xiu-juan, LI Can. The Collision Model for Indoor Fine Particles and the Collision Results[J]. Applied Mathematics and Mechanics, 2016, 37(7): 766-774. doi: 10.21656/1000-0887.360349

室内细颗粒物碰撞模型及碰撞结果讨论

doi: 10.21656/1000-0887.360349
基金项目: 国家自然科学基金(51246008)
详细信息
    作者简介:

    王秀娟(1991—),女,硕士生(E-mail: annewxj@163.com);李灿(1968—),女,教授,博士(通讯作者. E-mail: lc19992@126.com).

  • 中图分类号: X513;O359

The Collision Model for Indoor Fine Particles and the Collision Results

Funds: The National Natural Science Foundation of China(51246008)
  • 摘要: 为了研究室内细颗粒物凝并机理,基于统计平均及颗粒物随机运动的思想对室内细颗粒物碰壁数和细颗粒物之间发生对心碰撞的概率进行了总结计算,并对碰撞之后的结果进行了定量和定性的分析,得到了0.3 μm的DOP颗粒的最终压缩变形与碰撞发生初始速度以及碰撞效率随粒径变化曲线.颗粒物碰撞后凝并的可能性会随着颗粒碰撞初速度的增加而降低,小粒径颗粒发生碰撞后凝并的可能性一般会大于大粒径颗粒,碰撞效率随粒径的增大而减小.
  • [1] 陈林烽. 热剪切湍流中微细颗粒输运特性的大涡模拟研究[D]. 硕士学位论文. 上海: 上海大学, 2011.(CHEN Lin-feng. An investigation on particle motion in the stratified turbulence by LES[D]. Master Thesis. Shanghai: Shanghai University, 2011.(in Chinese))
    [2] Kitron A, Elperin T, Tamir A. Monte Carlo simulation of gas-solids suspension flows in impinging streams reactors[J]. International Journal of Multiphase Flow,1990,16(1): 1-17.
    [3] Lun C K K, Savage S B. A simple kinetic theory for granular flow of rough, inelastic, spherical particles[J]. Journal of Applied Mechanics,1987,54(1): 47-53.
    [4] Tanaka T, Tsuji Y. Numerical simulation of gas-solid two-phase flow in a vertical pipe: on the effect of particle-to-particle collision[J]. Transactions of the Japan Society of Mechanical Engineers B,1990,56(1): 3210-3216.
    [5] Oesterle B, Petitjean A. Simulation of particle-to-particle interactions in gas solid flows[J]. International Journal of Multiphase Flow,1993,19(1): 199-211.
    [6] 王玉明, 林建忠. Brown凝并中两个不同直径纳米颗粒的碰撞系数[J]. 应用数学和力学, 2011,32(8): 956-963.(WANG Yu-ming, LIN Jian-zhong. Collision efficiency of two nanoparticles with different diameters in the Brownian coagulation[J]. Applied Mathematics and Mechanics,2011,32(8): 956-963.(in Chinese))
    [7] 陈忠利, 游振江. 球形纳米颗粒Brown凝并碰撞效率的新表达式[J]. 应用数学和力学, 2010,31(7): 812-821.(CHEN Zhong-li, YOU Zhen-jiang. New expression for collision efficiency of spherical nanoparticles in Brownian coagulation[J]. Applied Mathematics and Mechanics,2010,31(7):812-821.(in Chinese))
    [8] 樊建人, 姚军, 张新育, 岑可法. 气固两相流中颗粒-颗粒随机碰撞新模型[J]. 工程热物理学报, 2001,22(5): 629-632.(FAN Jian-ren, YAO Jun, ZHANG Xin-yu, CEN Ke-fa. Modeling particle-to-particle interactions in gas-solid flows[J]. Journal of Engineering Thermophysics,2001,22(5): 629-632.(in Chinese))
    [9] 刘家福, 张昌芳. 气体分子碰撞的模型无关分析[J]. 物理与工程, 2010,20(1): 26-27.(LIU Jia-fu, ZHANG Chang-fang. Model-independent analysis of the gas molecules collision[J].Physics and Engineering,2010,20(1): 26-27.(in Chinese))
    [10] 王玉明. 微小颗粒碰撞与凝并模型的研究[D]. 硕士学位论文. 杭州: 中国计量学院, 2012.(WANG Yu-ming. Research on the model of micro-particle collision and coagulation[D]. Master Thesis. Hangzhou: China Jiliang University, 2012.(in Chinese))
    [11] 张文斌, 祁海鹰, 由长福, 徐旭常. 碰撞诱发颗粒团聚及破碎的力学分析[J]. 清华大学学报(自然科学版), 2002,42(12): 1639-1643.(ZHANG Wen-bin, QI Hai-ying, YOU Chang-fu, XU Xu-chang. Mechanical analysis of agglomeration and fragmentation of particles during collision [J]. Journal of Tsinghua University (Science and Technology),2002,42(12):1639-1643.(in Chinese))
    [12] 柳冠青. 范德华力和静电力下的细颗粒离散动力学研究[D]. 博士学位论文. 北京: 清华大学, 2011.(LIU Guan-qing. Discrete element methods of fine particle dynamics in presence of Van der Waals and electrostatic forces[D]. PhD Thesis. Beijing: Tsinghua University, 2011.(in Chinese))
    [13] 周涛, 李洪钟. 粘性颗粒流化床中聚团大小的计算模型[J]. 化学反应工程与工艺, 1999,15(1): 44-52.(ZHOU Tao, LI Hong-zhong. The calculation model of agglomerate sizes in fluidized beds of cohesive particles[J]. Chemical Reaction Engineering and Technology,1999,15(1): 44-52.(in Chinese))
    [14] 崔术祥. 湿度对室内颗粒物分布的影响[D]. 硕士学位论文. 湖南: 湖南工业大学, 2013.(CUI Shu-xiang. The influence of humidity on the distribution of indoor particle[D]. Master Thesis. Hunan: Hunan University of Technology, 2013.(in Chinese))
    [15] 陈富华. 燃煤超细颗粒物化学团聚理论及系统设计研究[D]. 硕士学位论文. 武汉: 华中科技大学, 2012.(CHEN Fu-hua. A theory study and system design of chemical agglomeration for ultrafine particulate matter[D]. Master Thesis. Wuhan: Huazhong University of Science and Technology, 2012.(in Chinese))
    [16] 谢名春. 关于分子碰壁数的计算[J]. 四川师范大学学报(自然科学版), 1990,13(1): 72-73.(XIE Ming-chun. Calculation concerning the number of molecules colliding with a wall[J]. Journal of Sichuan Normal University(Natural Science),1990,13(1): 72-73.(in Chinese))
    [17] Nazaroff W W. Indoor particle dynamics[J]. Indoor Air,2004,14(7): 175-183.
    [18] 中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 采暖通风与空气调节设计规范: GB 50019—2003[S]. 2003.(Ministry of Construction of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for design of heating ventilation and air conditioning: GB 50019—2003[S]. 2003.(in Chinese))
  • 加载中
计量
  • 文章访问数:  773
  • HTML全文浏览量:  78
  • PDF下载量:  560
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-16
  • 修回日期:  2016-02-23
  • 刊出日期:  2016-07-15

目录

    /

    返回文章
    返回