## 留言板

 引用本文: 徐华, 徐德峰, 杨绿峰. 裂纹群应力强度因子分析的广义参数有限元法[J]. 应用数学和力学, 2016, 37(10): 1039-1049.
XU Hua, XU De-feng, YANG Lü-feng. A Finite Element Method With Generalized DOFs for Stress Intensity Factors of Crack Groups[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1039-1049. doi: 10.21656/1000-0887.370050
 Citation: XU Hua, XU De-feng, YANG Lü-feng. A Finite Element Method With Generalized DOFs for Stress Intensity Factors of Crack Groups[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1039-1049.

## 裂纹群应力强度因子分析的广义参数有限元法

##### doi: 10.21656/1000-0887.370050

###### 作者简介:徐华(1979—)，男，副教授，博士(E-mail: xuhua@gxu.edu.cn)；杨绿峰(1966—)，男，教授，博士，博士生导师(通讯作者. E-mail: lfyang@gxu.edu.cn).
• 中图分类号: O346.1

## A Finite Element Method With Generalized DOFs for Stress Intensity Factors of Crack Groups

Funds: The National Natural Science Foundation of China(51268003；51478125)
• 摘要: 利用广义参数有限元法直接求解了裂纹群裂尖应力强度因子.首先根据改进的Williams级数建立典型裂尖奇异区Williams单元，然后通过分块集成形成求解域整体刚度方程，进一步利用Williams级数的待定系数直接确定各裂尖应力强度因子，最后通过算例分析研究了裂纹间距、裂纹与X轴夹角等参数对计算结果的影响.结果表明，该文方法能够有效克服断裂分析的传统有限元法的缺陷，具有更高的计算精度和效率.而且对于含有多条等长共线水平裂纹的无限大板，当相邻裂纹间距与裂纹半长之比大于9时，可忽略裂纹之间的相互影响，按照单裂纹进行计算；对于沿Y轴对称分布的偶数条等长斜裂纹的无限大板，随着裂纹与X轴夹角的增大，K逐渐减小，K先增大后减小.
•  [1] 马文涛, 许艳, 马海龙. 修正的内部基扩充无网格法求解多裂纹应力强度因子[J]. 工程力学, 2015,32(10): 18-24.(MA Wen-tao, XU Yan, MA Hai-long. Solving stress intensity factors of multiple cracks by using a modified intrinsic basis enriched meshless method[J]. Engineering Mechanics,2015,32(10): 18-24.(in Chinese）） [2] Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity [M]. Holland: Noordhoff Press, 1953: 1-768. [3] Wang Y H, Tham L G, Lee P K K, Tsui Y. A boundary collocation method for cracked plates[J]. Computers & Structures,2003,81(28): 2621-2630. [4] 李爱民, 崔海涛, 温卫东. I-II复合型多裂纹板的应力强度因子分析[J]. 机械科学与技术, 2015,34(5): 803-807.(LI Ai-min, CUI Hai-tao, WEN Wei-dong. Analyzing stress intensity factors of a plate with multiple mixed-mode cracks[J]. Mechanical Science and Technology for Aerospace Engineering,2015,34(5): 803-807.(in Chinese）） [5] Chen W H, Chang C S. Analysis of two dimensional fracture problems with multiple cracks under mixed boundary conditions[J]. Engineering Fracture Mechanics,1989,34(4): 921-934. [6] 刘钧玉, 林皋, 胡志强. 裂纹面荷载作用下多裂纹应力强度因子计算[J]. 工程力学, 2011,28(4): 7-12.(LIU Jun-yu, LIN Gao, HU Zhi-qiang. The calculation of stress intensity factors of multiple cracks under surface tractions[J]. Engineering Mechanics,2011,28(4): 7-12.(in Chinese）） [7] Cartwright D J, Rooke D P. Approximate stress intensity factors compounded from known solutions[J]. Engineering Fracture Mechanics,1974,6(3): 563-571. [8] 陈莉, 王志智, 聂学州. 一种多裂纹应力强度因子计算的新方法[J]. 结构强度, 2004,26(S): 210-212.(CHEN Li, WANG Zhi-zhi, NIE Xue-zhou. New approach for stress intensity factor calculation of multiple site cracks[J]. Journal of Mechanical Strength,2004,26(S): 210-212.（in Chinese）） [9] Guo Z, Liu Y J, Ma H, Huang S. A fast multipole boundary element method for modeling 2-D multiple crack problems with constant elements[J]. Engineering Analysis With Boundary Elements,2014,47: 1-9. [10] Singh I V, Mishra B K, Pant M. A modified intrinsic enriched element free Galerkin method for multiple cracks simulation[J]. Materials and Design,2010,31(1): 628-632. [11] 陈军斌, 魏波, 谢青, 王汉青, 李涛涛, 王浩. 基于扩展有限元的页岩水平井多裂缝模拟研究[J]. 应用数学和力学, 2016,37(1): 73-83.(CHEN Jun-bin, WEI Bo, XIE Qing, WANG Han-Qing, LI Tao-tao, WANG Hao. Simulation of multi-hydrofracture horizontal wells in shale based on the extended finite element method[J]. Applied Mathematics and Mechanics, 2016,37(1): 73-83.（in Chinese）） [12] 杨绿峰, 徐华, 彭俚, 李冉. 断裂问题分析的Williams广义参数单元[J]. 计算力学学报, 2009,26(1): 33-39.(YANG Lü-feng, XU Hua, PENG Li, LI Ran. Analysis of crack problems by Williams generalized parametric element[J]. Chinese Journal of Computational Mechanics,2009,26(1): 33-39.(in Chinese）） [13] 杨绿峰, 徐华, 李冉, 彭俚. 广义参数有限元法计算应力强度因子[J]. 工程力学, 2009,26(3): 48-54.(YANG Lü-feng, XU Hua, LI Ran, PENG Li. The finite element with generalized coefficients for stress intensity factor[J]. Engineering Mechanics,2009,26(3): 48-54.(in Chinese）） [14] 徐华, 杨绿峰, 佘振平. Ⅲ型应力强度因子分析的Williams单元[J]. 中南大学学报(自然科学版), 2012,43（8）: 3237-3243.(XU Hua, YANG Lü-feng, SHE Zhen-pin. Williams element for mode-Ⅲ stress intensity factor[J]. Journal of Central South University(Science and Technology), 2012,43(8): 3237-3243.(in Chinese）） [15] 中国航空研究院. 应力强度因子手册（增订版）[M]. 北京: 科学出版社, 1993: 75-76, 110-113.（China Aviation Institute. The Stress Intensity Factor Handbook(Updated Version) [M]. Beijing: Science Press, 1993: 75-76， 110-113.（in Chinese））

##### 计量
• 文章访问数:  879
• HTML全文浏览量:  105
• PDF下载量:  1174
• 被引次数: 0
##### 出版历程
• 收稿日期:  2016-02-16
• 修回日期:  2016-09-11
• 刊出日期:  2016-10-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈