留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非结构自适应网格的二维Euler方程数值求解方法研究

杨雨薇 虞佳磊 张亚萍 李幸刚 邱晓朴

杨雨薇, 虞佳磊, 张亚萍, 李幸刚, 邱晓朴. 基于非结构自适应网格的二维Euler方程数值求解方法研究[J]. 应用数学和力学, 2016, 37(9): 981-992. doi: 10.21656/1000-0887.370077
引用本文: 杨雨薇, 虞佳磊, 张亚萍, 李幸刚, 邱晓朴. 基于非结构自适应网格的二维Euler方程数值求解方法研究[J]. 应用数学和力学, 2016, 37(9): 981-992. doi: 10.21656/1000-0887.370077
YANG Yu-wei, YU Jia-lei, ZHANG Ya-ping, LI Xing-gang, QIU Xiao-pu. Numerical Solution of the 2D Compressible Euler Equations Based on the Unstructured Adaptive Grids[J]. Applied Mathematics and Mechanics, 2016, 37(9): 981-992. doi: 10.21656/1000-0887.370077
Citation: YANG Yu-wei, YU Jia-lei, ZHANG Ya-ping, LI Xing-gang, QIU Xiao-pu. Numerical Solution of the 2D Compressible Euler Equations Based on the Unstructured Adaptive Grids[J]. Applied Mathematics and Mechanics, 2016, 37(9): 981-992. doi: 10.21656/1000-0887.370077

基于非结构自适应网格的二维Euler方程数值求解方法研究

doi: 10.21656/1000-0887.370077
基金项目: 国家自然科学基金(61262070;61462097)
详细信息
    作者简介:

    杨雨薇(1993—),女,硕士生(E-mail: 18287112897@163.com);张亚萍(1979—),女,副教授,博士,硕士生导师(通讯作者. E-mail: zhangyp79@sina.com).

  • 中图分类号: O351

Numerical Solution of the 2D Compressible Euler Equations Based on the Unstructured Adaptive Grids

Funds: The National Natural Science Foundation of China(61262070;61462097)
  • 摘要: 提出了一种基于非结构自适应网格的二维Euler方程的数值解法.采用有限体积法进行空间离散,通量计算采用Jamson中心格式,使得它适用于任意多边形计算单元.为了得到定常解,采用一种显式的四步Runge-Kutta迭代方法对时间进行积分.根据流场参数的变化梯度确定加密边,由加密准则进行自适应网格剖分, 然后得到分布合理的加密过后的网格.求解二维Euler方程,对NACA0012翼型进行了数值模拟,通过对自适应前后的数值解的对比,说明所建立的方法是正确的.
  • [1] 范绪箕, 董葳. 计算流体力学在飞行器研制中的应用[J]. 民用飞机设计与研究, 2004(4): 2-11.(FAN Xu-ji, DONG Wei. Application of computational fluid dynamics in aircraft development[J]. Civil Aircraft Design And Research,2004(4): 2-11.(in Chinese))
    [2] 孙少鹏, 杨岞生. 非结构网格生成技术的研究[J]. 空气动力学学报, 1996,14(1): 19-25.(SUN Shao-peng, YANG Zuo-sheng. Research on unstructured grid generation technology[J]. Acta Aerodynamica Sinica,1996,14(1): 19-25.(in Chinese))
    [3] Connell S D, Holmes D. A 3D unstructured adaptive multigrid scheme for the Euler equations[C]// 11th Computational Fluid Dynamics Conference . Orlando, FL, USA, 1993: AIAA-93-3339.
    [4] 王平, 朱自强. 二维非结构网格的生成及其Euler方程解[J]. 北京航空航天大学学报, 2000,26(2): 190-193.(WANG Ping, ZHU Zi-qiang. Generation of 2D unstructured grid and the Euler solution on it[J]. Journal of Beijing University of Aeronautics and Astronautics,2000,26(2): 190-193.(in Chinese))
    [5] Shang H M, Chen Y S. Unstructured adaptive grid method for reacting flow computation[C]//33rd Joint Propulsion Conference and Exhibit.Seattle, WA, USA, 1997: AIAA 97-3183.
    [6] Blazek J. Computational Fluid Dynamics: Principles and Applications [M]. UK: Elsevier, 2001.
    [7] Northrup S A, Groth C P T. Parallel implicit adaptive mesh refinement for unsteady fully-compressible reactive flows[C]//21st AIAA Computational Fluid Dynamics Conference.San Diego, CA, 2013: AIAA- 2013-2433.
    [8] L?hner R, Baum J D. Adaptive h-refinement on 3D unstructured grids for transient problems[J]. International Journal for Numerical Methods in Fluids,1992,14(12): 1407-1419.
    [9] Godunov S K. A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb.47[J]. Mathematics of the USSR-Sbornik,1959: 271-306.
    [10] 尹河. 在非结构自适应网格上对二维Euler方程进行数值模拟[D]. 博士学位论文. 西安: 西北工业大学, 2001.(YIN He. Numerical simulation of two dimensional Euler equations on unstructured adaptive meshes[D]. PhD Thesis. Xi’an: Northwestern Polytechnical University, 2001.(in Chinese))
    [11] 董程栋. Euler方程的自适应叉树结构直角网格算法的研究[J]. 博士学位论文. 南京: 南京航空航天大学, 1999.(DONG Cheng-dong. Euler equation of the adaptive cross tree structure of the right angle grid algorithm[D]. PhD Thesis. Nanjing: Nanjing University of Aeronautics & Astronautics, 1999.(in Chinese))
    [12] 黄明恪. Jameson有限体积法对非结构网格推广的改进[J]. 空气动力学报, 1999,17(1): 15-20.(HUANG Ming-ke. Improvement of the extension of Jameson’s finite volume method to unstructured meshes[J]. Acta Aerodynamics Sinica,1999,17(1): 15-20.(in Chinese))
    [13] Rodriguez I, Lehmkuhl O, Borrell R, Oliva A. Direct numerical simulation of a NACA0012 in full stall[J]. International Journal of Heat and Fluid Flow,2013,43: 194-203.
    [14] Forestieri G, Guardone A, Isola D, Marulli F, Quaranta G. Numerical simulation of compressible vertical flows using a conservative unstructured-grid adaptive scheme[J].Communications in Computational Physics,2012,12(3): 866-884.
    [15] Collaboration E , Bryan G L, Norman M L, et al. Enzo: an adaptive mesh refinement code for astrophysics[J].Astrophysical Journal Supplement,2013. doi: 10.1088/0067-0049/211/2/19.
  • 加载中
计量
  • 文章访问数:  860
  • HTML全文浏览量:  63
  • PDF下载量:  635
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-16
  • 修回日期:  2016-07-07
  • 刊出日期:  2016-09-15

目录

    /

    返回文章
    返回