留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时滞速度反馈作用下弹性梁的主共振分析

彭剑 张改 孙测世

彭剑, 张改, 孙测世. 时滞速度反馈作用下弹性梁的主共振分析[J]. 应用数学和力学, 2016, 37(11): 1208-1216. doi: 10.21656/1000-0887.370083
引用本文: 彭剑, 张改, 孙测世. 时滞速度反馈作用下弹性梁的主共振分析[J]. 应用数学和力学, 2016, 37(11): 1208-1216. doi: 10.21656/1000-0887.370083
PENG Jian, ZHANG Gai, SUN Ce-shi. Primary Resonance of Elastic Beams Under Time-Delay Velocity Feedback Control[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1208-1216. doi: 10.21656/1000-0887.370083
Citation: PENG Jian, ZHANG Gai, SUN Ce-shi. Primary Resonance of Elastic Beams Under Time-Delay Velocity Feedback Control[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1208-1216. doi: 10.21656/1000-0887.370083

时滞速度反馈作用下弹性梁的主共振分析

doi: 10.21656/1000-0887.370083
基金项目: 国家自然科学基金(11402085);国家重点基础研究发展计划(973计划)(2015CB057702);湖南省教育厅资助项目(14C0464);湖南省优秀博士论文资助项目(YB2015B035)
详细信息
    作者简介:

    彭剑(1982—),男,讲师,博士,硕士生导师(通讯作者. E-mail: pengjian@hnu.edu.cn).

  • 中图分类号: O322; TB123

Primary Resonance of Elastic Beams Under Time-Delay Velocity Feedback Control

Funds: The National Basic Research Program of China (973 Program)(2015CB057702)
  • 摘要: 采用时滞速度反馈控制策略对轴力作用下的弹性梁进行振动控制.根据Newton第二定律建立压电耦合弹性梁的非线性振动控制模型,运用直接法得到时滞反馈作用下弹性梁主共振的一阶近似解,得出系统响应与控制参数的关系.结果表明,主共振的响应存在多解和跳跃现象,调节控制增益和时滞值可以有效抑制大幅振动.
  • [1] Anthony D K, Elliott S J. Comparison of the effectiveness of minimizing cost function parameters for active control of vibrational energy transmission in a lightly damped structure[J]. Journal of Sound and Vibration,2000,237(2): 223-244.
    [2] HAN Sang-jun. Active/passive seismic control of structures[D]. PhD Thesis. Washington DC: The Catholic University of America, 2002.
    [3] 王在华, 胡海岩. 时滞动力系统的稳定性与分岔: 从理论走向应用[J]. 力学进展, 2013,43(1): 3-20.(WANG Zai-hua, HU Hai-yan. Stability and bifurcation of delayed dynamics systems: from theory to application[J]. Advances in Mechanics,2013,43 (1): 3-20.(in Chinese))
    [4] HU Hai-yan, WANG Zai-hua. Dynamics of Controlled Mechanical Systems With Delayed Feedback [M]. Berlin: Springer-Verlag, 2002.
    [5] 蔡国平. 存在时滞的柔性梁的振动主动控制[J]. 固体力学学报, 2004,25(1): 29-34.(CAI Guo-ping. Active vibration control of a flexible beam with time delay in control[J]. Acta Mechanica Solida Sinica,2004,25(1): 29-34.(in Chinese))
    [6] 陈龙祥, 蔡国平. 旋转运动柔性梁的时滞主动控制实验研究[J]. 力学学报, 2008,40(4): 520-527.(CHEN Long-xiang, CAI Guo-ping. Experimental study on active control of a rotating flexible beam with time delay[J]. Chinese Journal of Theoretical and Applied Mechanics,2008,40(4): 520-527.(in Chinese))
    [7] 徐鉴, 陆启韶. 非自治时滞反馈控制系统的周期解分岔和混沌[J]. 力学学报, 2003,35(4): 443-451.(XU Jian, LU Qi-shao. Bifurcation and chaos due to time delay in a delayed control non-autonomous system[J]. Acta Mechanica Sinica,2003,35(4): 443-451.(in Chinese))
    [8] 赵艳影, 徐鉴. 时滞动力吸振器及其对主系统振动的影响[J]. 振动工程学报, 2006,19(4): 548-552.(ZHAO Yan-ying, XU Jian. Delayed resonator and its effects on vibrations in primary system[J]. Journal of Vibration Engineering,2006,19(4): 548-552.(in Chinese))
    [9] Masoud Z N, Daqaq M F, Nayfeh N A. Pendulation reduction on small ship-mounted telescopic cranes[J]. Journal of Vibration and Control,2004,10(8): 1167-1179.
    [10] Masoud Z N, Nayfeh A H, Al-Mousa A. Delayed position-feedback controller for the reduction of payload pendulations on rotary cranes[J]. Journal of Vibration and Control,2003,9(1/2): 257-277.
    [11] 安方, 陈卫东. 时滞加速度反馈的振动主动控制方法研究[J]. 振动工程学报, 2012,25(4): 401-410.(AN Fang, CHEN Wei-dong. Active vibration control using time-delayed acceleration feedback[J]. Journal of Vibration Engineering,2012,25(4): 401-410.(in Chinese))
    [12] 孙中奎, 徐伟, 杨晓丽. 窄带激励下带有时滞反馈的非线性动力系统的响应[J]. 振动工程学报, 2006,19(1): 57-64.(SUN Zhong-kui, XU Wei, YANG Xiao-li. Response of nonlinear system to random narrow-band excitation with time delay state feedback[J]. Journal of Vibration Engineering,2006,19(1): 57-64.(in Chinese))
    [13] 齐欢欢, 徐鉴, 方明霞. 超音速飞行器机翼颤振的时滞反馈控制[J]. 应用数学和力学, 2016,37(2): 210-218.(QI Huan-huan, XU Jian, FANG Ming-xia. Time-delayed feedback control of flutter for supersonic airfoils[J]. Applied Mathematics and Mechanics,2016,37(2): 210-218.(in Chinese))
    [14] 王万永, 陈丽娟. 具有时滞耦合的 n 个Van der Pol振子弱共振双Hopf分岔[J]. 应用数学和力学, 2013,34(7): 764-770.(WANG Wan-yong,CHEN Li-juan. Weak resonant double Hopf bifurcation of n Van der Pol oscillators with delay coupling[J]. Applied Mathematics and Mechanics,2013,34(7): 764-770.(in Chinese))
    [15] Daqaq M F, Alhazza K A, Arafat H N. Non-linear vibrations of cantilever beams with feedback delays[J]. International Journal of Non-Linear Mechanics,2008,43(9): 962-978.
    [16] 彭剑, 赵珧冰, 王连华. 时滞反馈及轴力作用下弹性梁的非线性振动[J]. 湖南大学学报(自然科学版), 2013,40(9): 30-36.(PENG Jian, ZHAO Yao-bing, WANG Lian-hua. Nonlinear vibrations of elastic beams subjected to axial force and delayed-feedback[J]. Journal of Hunan University(Natural Science),2013,40(9): 30-36.(in Chinese))
    [17] Nayfeh A H, Pai P F. Linear and Nonlinear Structure Mechanics [M]. New York: Wiley-Interscience, 2004.
    [18] 王在华, 李俊余. 时滞状态正反馈在振动控制中的新特征[J]. 力学学报, 2010,42(5): 933-942.(WANG Zai-hua, LI Jun-yu. New features of positive time-delayed feedbacks in vibration control[J]. Chinese Journal of Theoretical and Applied Mechanics,2010,42(5): 933-942.(in Chinese))
  • 加载中
计量
  • 文章访问数:  868
  • HTML全文浏览量:  69
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-22
  • 修回日期:  2016-04-19
  • 刊出日期:  2016-11-15

目录

    /

    返回文章
    返回