留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维-不锈钢层板热载条件下冲击动态响应及层间损伤仿真研究

唐小军 回天力 王振清 杨凤龙

唐小军, 回天力, 王振清, 杨凤龙. 碳纤维-不锈钢层板热载条件下冲击动态响应及层间损伤仿真研究[J]. 应用数学和力学, 2016, 37(10): 1026-1038. doi: 10.21656/1000-0887.370092
引用本文: 唐小军, 回天力, 王振清, 杨凤龙. 碳纤维-不锈钢层板热载条件下冲击动态响应及层间损伤仿真研究[J]. 应用数学和力学, 2016, 37(10): 1026-1038. doi: 10.21656/1000-0887.370092
TANG Xiao-jun, HUI Tian-li, WANG Zhen-qing, YANG Feng-long. Numerical Simulation of Impact Dynamic Responses and Interlayer Failure of CFRMLs Under Thermal Loads[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1026-1038. doi: 10.21656/1000-0887.370092
Citation: TANG Xiao-jun, HUI Tian-li, WANG Zhen-qing, YANG Feng-long. Numerical Simulation of Impact Dynamic Responses and Interlayer Failure of CFRMLs Under Thermal Loads[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1026-1038. doi: 10.21656/1000-0887.370092

碳纤维-不锈钢层板热载条件下冲击动态响应及层间损伤仿真研究

doi: 10.21656/1000-0887.370092
基金项目: 国家自然科学基金(11272096)
详细信息
    作者简介:

    唐小军(1987—),男,工程师,博士(通讯作者. E-mail: xiaojuntang87@sina.com).

  • 中图分类号: V45;O341

Numerical Simulation of Impact Dynamic Responses and Interlayer Failure of CFRMLs Under Thermal Loads

Funds: The National Natural Science Foundation of China(11272096)
  • 摘要: 为了研究碳纤维不锈钢层板的冲击动态响应以及热载荷条件下的冲击性能,采用ABAQUS/Explicit,编写基于复合材料渐进损伤用户子程序VUMAT;引入Johnson-Cook模型,仿真计算了碳纤维增强环氧树脂基复合材料-SS304不锈钢层板热载条件下冲击动态响应过程;分析了其冲击动态响应及渐进损伤,着重讨论了热载荷条件对碳纤维金属层板的冲击能量吸收、接触力等抗冲击性能及失效模式的影响.结果显示,高速冲击载荷作用下,纤维层的脆性断裂、金属层的塑性变形以及纤维层与金属层之间的脱层是碳纤维不锈钢层板的主要失效形式.热载荷的存在直接影响了冲头的接触力,随环境温度升高,接触力总体上降低,子弹的速度衰减越慢,剩余速度增大.结果表明,热载荷降低了纤维金属板的冲击动能吸收特性,弱化了碳纤维金属板的抗冲击性能.无论是纤维金属层板的整体破坏,还是纤维失效、基体失效和脱层失效,热载荷都产生了重要影响.
  • [1] Vogelesang L B, Vlot A. Development of fibre metal laminates for advanced aerospace structures[J]. Journal of Materials Processing Technology,2000,103(1): 1-5.
    [2] 万云, 王振清, 周利民, 章继峰. 表面机械研磨(SMAT)技术对玻璃纤维增强铝金属层板(GLARE)拉伸性能的影响[J]. 应用数学和力学, 2014,35(10): 1107-1114.(WAN Yun, WANG Zhen-qing, ZHOU Li-min, ZHANG Ji-feng. Effect of surface mechanical attrition treatment (SMAT) on the tensile performance of fibre reinforced aluminium laminates[J]. Applied Mathematics and Mechanics, 2014,35(10): 1107-1114.(in Chinese))
    [3] 顾伯洪, 孙宝忠. 纺织结构复合材料冲击动力学[M]. 北京: 科学出版社, 2012.(GU Bo-hong, SUN Bao-zhong. Textile Structural Composites Impact Dynamics [M]. Beijing: Science Press, 2012.(in Chinese))
    [4] Ahmadi H, Sabouri H, Liaghat G, Bidkhori E. Experimental and numerical investigation on the high velocity impact response of GLARE with different thickness ratio[J]. Procedia Engineering,2011,10: 869-874.
    [5] Yaghoubi A S, Liaw B. Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams[J]. International Journal of Impact Engineering,2013,54: 138-148.
    [6] Morinière F D, Alderliesten R C, Sadighi M, Benedictus R. An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate[J]. Composite Structures,2013,100: 89-103.
    [7] 陈勇, 庞宝君, 郑伟, 张志远. 纤维金属层板低速冲击试验和数值仿真[J]. 复合材料学报, 2014,31(3): 733-740.(CHEN Yong, PANG Bao-jun, ZHENG Wei, ZHANG Zhi-yuan. Tests and numerical simulation on low velocity impact performance of fiber metal laminates[J]. Acta Materiae Compositae Sinica,2014,31(3): 733-740.(in Chinese))
    [8] Morinière F D, Alderliesten R C, Benedictus R. Low-velocity impact energy partition in GLARE[J]. Mechanics of Materials,2013,66: 59-68.
    [9] Starikov R. Assessment of impact response of fiber metal laminates[J]. International Journal of Impact Engineering,2013,59: 38-45.
    [10] Vlot A. Impact properties of fibre metal laminates[J]. Composites Engineering,1993,3(10): 911-927.
    [11] Vlot A. Impact loading on fibre metal laminates[J]. International Journal of Impact Engineering,1996,18(3): 291-307.
    [12] Payeganeh G H, AshenaiGhasemi F, Malekzadeh K. Dynamic response of fiber-metal laminates (FMLs) subjected to low-velocity impact[J]. Thin-Walled Structures,2010,48(1): 62-70.
    [13] Laliberté JF, Poon C, Straznicky P V, Fahr A. Post-impact fatigue damage growth in fiber-metal laminates[J]. International Journal of Fatigue,2002,24(2/4): 249-256.
    [14] Caprinoa G, Spatarob G, Del Luongo S. Low-velocity impact behaviour of fibreglass-aluminium laminates[J]. Composites Part A: Applied Science and Manufacturing,2004,35(5): 605-616.
    [15] Frontán J, ZHANG Yu-ming, DAO Ming, LU Jian, Gálvez F, Jérusalem A. Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel[J]. Acta Materialia,2012,60(3): 1353-1367.
    [16] Shchegel G O, Bhm R, Hornig A, Astanin V V, Hufenbach W A. Probabilistic damage modelling of textile-reinforced thermoplastic composites under high velocity impact based on combined acoustic emission and electromagnetic emission measurements[J]. International Journal of Impact Engineering,2014,69: 1-10.
    [17] Heimbs S, Bergmann T, Schueler D, Toso-Pentecte N. High velocity impact on preloaded composite plates[J]. Composite Structures,2014,111: 158-168.
    [18] Hashin Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics,1980,47(2): 329-334.
    [19] Tan S C. A progressive failure model for composite laminates containing openings[J]. Journal of Composite Materials,1991,25(5): 556-577.
    [20] 刘兵山, 燕瑛, 田金梅. 纤维增强对称层合复合材料的宏观热膨胀系数研究[J]. 强度与环境, 2008,35(5): 17-24.(LIU Bing-shan, YAN Ying, TIAN Jin-mei. Study on the macro thermal expansion coefficients of fiber-reinforced symmetric laminates[J]. Structure & Environment Engineering,2008,35(5): 17-24.(in Chinese))
    [21] 严彪. 不锈钢手册[M]. 北京: 化学工业出版社, 2009.(YAN Biao. Stainless Steel Handbook[M]. Beijing: Chemical Industry Press, 2009.(in Chinese))
    [22] Lie T T, Irwin R J. Fire resistance of rectangular steel columns filled with bar reinforced concrete[J]. Journal of Structural Engineering,1995,121(5): 797-805.
  • 加载中
计量
  • 文章访问数:  1015
  • HTML全文浏览量:  69
  • PDF下载量:  862
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-31
  • 修回日期:  2016-05-29
  • 刊出日期:  2016-10-15

目录

    /

    返回文章
    返回