## 留言板

 引用本文: 王克用, 李培超. 双分散多孔介质圆形和圆环形通道内高速流动分析[J]. 应用数学和力学, 2017, 38(2): 206-215.
WANG Ke-yong, LI Pei-chao. Analysis of High Speed Flow in Circular and Annular Ducts Occupied by Bidisperse Porous Media[J]. Applied Mathematics and Mechanics, 2017, 38(2): 206-215. doi: 10.21656/1000-0887.370105
 Citation: WANG Ke-yong, LI Pei-chao. Analysis of High Speed Flow in Circular and Annular Ducts Occupied by Bidisperse Porous Media[J]. Applied Mathematics and Mechanics, 2017, 38(2): 206-215.

• 中图分类号: TK124

## Analysis of High Speed Flow in Circular and Annular Ducts Occupied by Bidisperse Porous Media

• 摘要: 基于双速度Brinkman-Darcy扩展流动模型，分析了高速流体在双分散多孔介质圆形和圆环形通道内的流动特征.双分散多孔介质裂纹相（f相）和多孔相（p相）流场相互耦合且本质上受四阶微分方程控制.采用正常模式降阶法将原控制方程化简为含两个中间变量的二阶解耦微分方程组，进而方便地推得f相和p相流场的速度分布解析解.不论圆形的还是圆环形的通道，两种结果均表明：两相流场的速度及其速度差随着Darcy数的提高而增大；但随着两相间动量传递程度的加强，两相流场呈现出相反的速度变化趋势，从而导致速度差变小.
•  [1] 杨骁, 刘雪梅. 多孔介质平板通道发展传热中非局部热平衡时的温度分布特征[J]. 应用数学和力学, 2006,27(8): 978-986.(YANG Xiao, LIU Xue-mei. Temperature profiles of local thermal nonequilibrium for thermal developing forced convection in a porous medium parallel plate channel[J]. Applied Mathematics and Mechanics,2006,27(8): 978-986.(in Chinese)) [2] 郭茶秀, 罗志军. 泡沫型多孔介质等效导热系数研究进展[J]. 储能科学与技术, 2013,2(6): 577-585.(GUO Cha-xiu, LUO Zhi-jun. Review on effective thermal conductivity of bubble type porous media[J]. Energy Storage Science and Technology,2013,2(6): 577-585.(in Chinese)) [3] 王克用, 王大中, 李培超. 多孔介质平板通道传热模型的两种求解方法[J]. 应用数学和力学, 2015,36(5): 494-504.(WANG Ke-yong, WANG Da-zhong, LI Pei-chao. Two decoupling methods for the heat transfer model of a plate channel filled with a porous medium[J]. Applied Mathematics and Mechanics,2015,36(5): 494-504.(in Chinese)) [4] Chen Z Q, Cheng P, Hsu C T. A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media[J]. International Communications in Heat and Mass Transfer,2000,27(5): 601-610. [5] Nield D A, Kuznetsov A V. A two-velocity two-temperature model for a bi-dispersed porous medium: forced convection in a channel[J]. Transport in Porous Media,2005, 59(3): 325-339. [6] Kuznetsov A V, Nield D A. Thermally developing forced convection in a bidisperse porous medium[J]. Journal of Porous Media,2006,9(5): 393-402. [7] Kuznetsov A V, Nield D A. Forced convection in a channel partly occupied by a bidisperse porous medium: asymmetric case[J]. International Journal of Heat and Mass Transfer,2010,53(23): 5167-5175. [8] Kuznetsov A V, Nield D A. Forced convection in a channel partly occupied by a bidisperse porous medium: symmetric case[J]. International Journal of Heat and Mass Transfer,2011,33(7): 072601-1-072601-9. [9] Cheng C Y. Natural convection heat transfer from an inclined wavy plate in a bidisperse porous medium[J]. International Communications in Heat and Mass Transfer,2013,43: 69-74. [10] Narasimhan A, Reddy B V K, Dutta P. Thermal management using the bi-disperse porous medium approach[J]. International Journal of Heat and Mass Transfer,2012,55(4): 538-546. [11] Narasimhan A, Reddy B V K. Laminar forced convection in a heat generating bi-disperse porous medium channel[J]. International Journal of Heat and Mass Transfer,2011,54(1): 636-644. [12] Nield D A, Kuznetsov A V. A note on modeling high speed flow in a bidisperse porous medium[J]. Transport in Porous Media,2012,96(3): 495-499. [13] Nield D A, Kuznetsov A V. Heat transfer in bidisperse porous media[C]//Transport Phenomena in Porous Media III . Oxford: Elsevier, 2005: 34-59. [14] Magyari E. Normal mode analysis of the high speed channel flow in a bidisperse porous medium[J]. Transport in Porous Media,2013,97(3): 345-352. [15] Hooman K, Sauret E, Dahari M. Theoretical modelling of momentum transfer function of bi-disperse porous media[J]. Applied Thermal Engineering,2014,75: 867-870. [16] Hung Y M, Tso C P. Effects of viscous dissipation on fully developed forced convection in porous media[J]. International Communications in Heat and Mass Transfer,2009,36(6): 597-603. [17] Mahmoudi Y, Karimi N, Mazaheri K. Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition: effects of different thermal boundary conditions at the porous-fluid interface[J]. International Journal of Heat and Mass Transfer,2014,70: 875-891. [18] Wang K Y, Tavakkoli F, Wang S J, et al. Forced convection gaseous slip flow in a porous circular microtube: an exact solution[J]. International Journal of Thermal Sciences,2015,97: 152-162. [19] Wang K Y, Tavakkoli F, Vafai K. Analysis of gaseous slip flow in a porous micro-annulus under local thermal non-equilibrium condition—an exact solution[J]. International Journal of Heat and Mass Transfer,2015,89(5): 1331-1341.

##### 计量
• 文章访问数:  773
• HTML全文浏览量:  76
• PDF下载量:  483
• 被引次数: 0
##### 出版历程
• 收稿日期:  2016-04-08
• 修回日期:  2016-07-25
• 刊出日期:  2017-02-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈