留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时滞影响下受控斜拉索的参数振动稳定性

彭剑 李禄欣 胡霞 王修勇

彭剑, 李禄欣, 胡霞, 王修勇. 时滞影响下受控斜拉索的参数振动稳定性[J]. 应用数学和力学, 2017, 38(2): 181-188. doi: 10.21656/1000-0887.370110
引用本文: 彭剑, 李禄欣, 胡霞, 王修勇. 时滞影响下受控斜拉索的参数振动稳定性[J]. 应用数学和力学, 2017, 38(2): 181-188. doi: 10.21656/1000-0887.370110
PENG Jian, LI Lu-xin, HU Xia, WANG Xiu-yong. Parametric Vibration Stability of Controlled Stay Cables With Time Delays[J]. Applied Mathematics and Mechanics, 2017, 38(2): 181-188. doi: 10.21656/1000-0887.370110
Citation: PENG Jian, LI Lu-xin, HU Xia, WANG Xiu-yong. Parametric Vibration Stability of Controlled Stay Cables With Time Delays[J]. Applied Mathematics and Mechanics, 2017, 38(2): 181-188. doi: 10.21656/1000-0887.370110

时滞影响下受控斜拉索的参数振动稳定性

doi: 10.21656/1000-0887.370110
基金项目: 国家自然科学基金(11402085);国家重点基础研究发展计划(973计划)(2015CB057702);湖南省教育厅资助项目(14C0464);湖南省研究生科研创新项目(CX2016B544)
详细信息
    作者简介:

    彭剑(1982—),男,讲师,博士,硕士生导师(通讯作者. E-mail: pengjian@hnu.edu.cn).

  • 中图分类号: O317; O328

Parametric Vibration Stability of Controlled Stay Cables With Time Delays

Funds: The National Natural Science Foundation of China(11402085); The National Basic Research Program of China(973 Program)(2015CB057702)
  • 摘要: 研究了轴向激励作用下受控斜拉索系统主参数共振的时滞效应,考虑了拉索垂度和几何非线性的影响,基于Hamilton变分原理建立了受控斜拉索系统轴向激励下的非线性参数振动方程,利用Galerkin方法得到时滞动力系统,运用多尺度法对受控系统的主参数共振进行了分析,得到了不同时滞值、控制增益时参数振动稳定域和受控拉索的时程曲线.研究表明,时滞影响下斜拉索振动控制系统的效果变差,参数共振的稳定域发生偏移,对受控斜拉索系统的控制效果随着时滞的增大而变差,从而对控制系统的参数设计起到指导作用.
  • [1] Ni Y Q, Wang X Y, Chen Z Q, et al. Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(5): 303-328.
    [2] 汪正兴, 王波, 柴小鹏. 大跨度斜拉桥斜拉索阻尼减振技术研究进展[J]. 桥梁建设, 2015,45(3): 13-19.(WANG Zheng-xing, WANG Bo, CHAI Xiao-peng. Research advancement of damping techniques for stay cables of long span cable-stayed bridges[J]. Bridge Construction,2015,45(3): 13-19.(in Chinese))
    [3] 亢战, 钟万勰. 斜拉桥参数共振问题的数值研究[J]. 土木工程学报, 1998,31(4): 14-22.(KANG Zhan, ZHONG Wan-xie. Numerical study on parametric resonance of cable in cable stayed bridge[J]. China Civil Engineering Journal,1998,31(4): 14-22.(in Chinese))
    [4] 汪峰, 文晓旭, 陈福青. 温度和桥面激励联合作用下斜拉索非线性振动特性分析[J]. 科学技术与工程, 2014,14(25): 135-139.(WANG Feng, WEN Xiao-xu, CHEN Fu-qing. Vibration analysis of long cables subjected to deck excitation and temperature[J]. Science Technology and Engineering,2014,14(25): 135-139.(in Chinese))
    [5] 陈水生, 孙炳楠, 胡隽. 斜拉索受轴向激励引起的面内参数振动分析[J]. 振动工程学报, 2002,15(2): 144-150.(CHEN Shui-sheng, SUN Bing-nan, HU Jun. Analysis of stayed-cable vibration caused by axial excitation[J]. Journal of Vibration Engineering,2002,15(2): 144-150.(in Chinese))
    [6] 汪至刚, 孙炳楠. 斜拉桥参数振动引起的拉索大幅振动[J]. 工程力学, 2001,18(1): 103-109.(WANG Zhi-gang, SUN Bing-nan. Cable vibration for cable stayed bridge by parametric response[J]. Engineering Mechanics,2001,18(1): 103-109.(in Chinese))
    [7] Pinto da Costa A, Martins J A C, Branco F, et al. Oscillations of bridge stay cables induced by periodic motions of deck and/or towers[J]. Journal of Engineering Mechanics,1996,122(7): 613-622.
    [8] WANG Lian-hua, ZHAO Yue-yu. Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions[J]. Journal of Sound and Vibration,2009,327(1/2): 121-133.
    [9] 赵跃宇, 王涛, 康厚军. 斜拉索主参数共振的稳定性分析[J]. 动力学与控制学报, 2008,6(2): 112-117.(ZHAO Yue-yu, WANG Tao, KANG Hou-jun. Analysis of the stability of principal parametric resonance of stayed-cable[J]. Journal of Dynamics and Control,2008,6(2): 112-117.(in Chinese))
    [10] ZHAO Yao-bing, SUN Ce-shi, WANG Zhi-qian, et al. Analytical solutions for resonant response of suspended cables subjected to external excitation[J]. Nonlinear Dynamics,2014,78(2): 1017-1032.
    [11] Ying Z G, Ni Y Q, Ko J M. Parametrically excited instability of a cable under two support motions[J]. International Journal of Structural Stability and Dynamics,2006,6(1): 43-58.
    [12] Ying Z G, Ni Y Q, Ko J M. Parametrically excited instability analysis of a semi-actively controlled cable[J]. Engineering Structures,2007,29(4): 567-575.
    [13] Fujino Y, Susumpow T. An experimental study on active control of in-plane cable vibration by axial support motion[J]. Earthquake Engineering & Structural Dynamics,1994,23(12):1283-1297.
    [14] Tehrani M G, Kalkowski M K, Elliott S J. Active control of parametrically excited systems[J]. Journal of Intelligent Material Systems and Structures,2015,27(9): 1-13. doi: 10.1177/1045389X15588625.
    [15] 彭剑, 赵珧冰, 孙测世, 等. 磁流变阻尼器——斜拉索控制系统中的时滞效应[J]. 工程力学, 2014,31(4): 155-159.(PENG Jian, ZHAO Yao-bing, SUN Ce-shi, et al. Time delay effects in MR damper—stay cable control systems[J]. Engineering Mechanics,2014,31(4): 155-159.(in Chinese))
    [16] 齐欢欢, 徐鉴, 方明霞. 超音速飞行器机翼颤振的时滞反馈控制[J]. 应用数学和力学, 2016,37(2): 210-218.(QI Huan-huan, XU Jian, FANG Ming-xia. Time-delayed feedback control of flutter supersonic airfoils[J]. Applied Mathematics and Mechanics,2016,37(2): 210-218.(in Chinese))
    [17] Nayfeh A H, Mook D T. Nonlinear Oscillations [M]. New York: John Wiley & Sons, 1979.
  • 加载中
计量
  • 文章访问数:  842
  • HTML全文浏览量:  67
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-21
  • 修回日期:  2016-05-20
  • 刊出日期:  2017-02-15

目录

    /

    返回文章
    返回