留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多晶石墨烯力学性质的分子动力学研究

鲁莹 钱劲

鲁莹, 钱劲. 多晶石墨烯力学性质的分子动力学研究[J]. 应用数学和力学, 2016, 37(9): 901-914. doi: 10.21656/1000-0887.370121
引用本文: 鲁莹, 钱劲. 多晶石墨烯力学性质的分子动力学研究[J]. 应用数学和力学, 2016, 37(9): 901-914. doi: 10.21656/1000-0887.370121
LU Ying, QIAN Jin. Grain-Size-Dependent Elastic Moduli and Strengths of Polycrystalline Graphene: Atomistic Simulations[J]. Applied Mathematics and Mechanics, 2016, 37(9): 901-914. doi: 10.21656/1000-0887.370121
Citation: LU Ying, QIAN Jin. Grain-Size-Dependent Elastic Moduli and Strengths of Polycrystalline Graphene: Atomistic Simulations[J]. Applied Mathematics and Mechanics, 2016, 37(9): 901-914. doi: 10.21656/1000-0887.370121

多晶石墨烯力学性质的分子动力学研究

doi: 10.21656/1000-0887.370121
基金项目: 国家自然科学基金(11321202);浙江省自然科学基金(LR16A020001)
详细信息
    作者简介:

    鲁莹(1989—),女,硕士生(E-mail: yinglu@zju.edu.cn);钱劲(1978—),男,教授,博士生导师(通讯作者. E-mail: jqian@zju.edu.cn).

  • 中图分类号: O34; O39

Grain-Size-Dependent Elastic Moduli and Strengths of Polycrystalline Graphene: Atomistic Simulations

Funds: The National Natural Science Foundation of China(11321202)
  • 摘要: 实验中纳米压痕被广泛用于测量单晶或多晶石墨烯的力学性质,而分子动力学模拟中研究者们更多地使用单轴拉伸来测量石墨烯的力学性质.两种测量方法对于多晶石墨烯弹性模量和破坏强度的预测是否存在差异?多晶石墨烯的力学性质是否依赖于其晶粒大小?对于固定晶粒大小的多晶石墨烯,拓扑结构的不同是否影响其力学性质?围绕以上问题,通过对比纳米压痕和单轴拉伸两种方法的分子动力学模拟,研究了多晶石墨烯弹性模量和破坏强度对晶粒尺寸、拓扑结构和测量方法的依赖性.
  • [1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films[J].Science,2004,306(5696): 666-669.
    [2] Mayorov A S, Elias D C, Mucha-Kruczynski M, Gorbachev R V, Tudorovskiy T, Zhukov A, Morozov S V, Katsnelson M I, Fal’ko V I, Geim A K, Novoselov K S. Interaction-driven spectrum reconstruction in bilayer graphene[J].Science,2011,333(6044): 860-863.
    [3] Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887): 385-388.
    [4] Lee G H, Cooper R C, An S J, Lee S, Van der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J. High-strength chemical-vapor-deposited graphene and grain boundaries[J].Science,2013,340(6136): 1073-1076.
    [5] Biró L P, Lambin P. Grain boundaries in graphene grown by chemical vapor deposition[J].New Journal of Physics,2013,15: 035024.
    [6] Reina A, Jia X, Ho J, Daniel N, Son H, Bulovic V, Dresselhaus M S, Kong J. Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J].Nano Letters,2009,9(8): 3087.
    [7] Ruiz-Vargas C S, Zhuang H L, Huang P Y, Van der Zande A M, Garg S, McEuen P L, Muller D A, Hennig R G, Park J. Softened elastic response and unzipping in chemical vapor deposition graphene membranes[J].Nano Letters,2011,11(6): 2259-2263.
    [8] Wang S, Suzuki S, Hibino H. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope Labeling[J].Nanoscale,2014,6(22): 13838-13844.
    [9] Podila R, Anand B, Spear J T, Puneet P, Philip R, Sai SS, Rao A M. Effects of disorder on the optical properties of CVD grown polycrystalline graphene[J].Nanoscale,2012,4(5): 1770-1775.
    [10] Song Z, Artyukhov V I, Yakobson B I, Xu Z. Pseudo hall-petch strength reduction in polycrystalline graphene[J].Nano Letters,2013,13(4): 1829-1833.
    [11] Mortazavi B, Cuniberti G. Atomistic modeling of mechanical properties of polycrystalline graphene[J].Nanotechnology,2014,25(21): 215704.
    [12] Chen M Q, Quek S S, Sha Z D, Chiu C H, Pei Q X, Zhang Y W. Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene—a molecular dynamics study[J].Carbon,2015,85: 135-146.
    [13] Becton M, Zeng X, Wang X. Computational study on the effects of annealing on the mechanical properties of polycrystalline graphene[J].Carbon,2015,86: 338-349.
    [14] Yang Z, Huang Y, Ma F, Sun Y, Xu K, Chu P K. Size-dependent deformation behavior of nanocrystalline graphene sheets[J].Materials Science & Engineering B: Advanced Functional Solid-State Materials,2015,198: 95-101.
    [15] Sha Z D, Wan Q, Pei Q X, Quek S S, Liu Z, Zhang Y, Shenoy V B. On the failure load and mechanism of polycrystalline graphene by nanoindentation[J].Scientific Reports,2014,4: 7437. doi: 10.1038/srep07437.
    [16] Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition[J].Nature Materials,2011,10(6): 443-449.
    [17] Brostow W, Dussault J P, Fox B L. Construction of Voronoi polyhedra[J].Journal of Computational Physics,1978,29(1): 81-92.
    [18] Finney J L. A procedure for the construction of Voronoi polyhedra[J].Journal of Computational Physics,1979,32(1): 137-143.
    [19] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1): 1-19.
    [20] Jones J E. On the determination of molecular fields—II: from the equation of state of a gas[C]// Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character,1924,106(738): 463-477.
    [21] Ruoff R S, Hickman A P. Van der Waals binding to fullerenes to a graphite plane[J].Journal of Physical Chemistry,1993,97(11): 2494-2496.
    [22] Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions[J].Journal of Chemical Physics,2000,112(14): 6472-6486.
    [23] Evans D J, Holian B L. The Nose-Hoover thermostat[J].Journal of Chemical Physics,1985,83(8): 4069-4074.
    [24] Nose S. A molecular dynamics method for simulations in the canonical ensemble[J].Molecular Physics,1984,52(2): 255-268.
    [25] Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J].Physical Review A,1985,31(3): 1695-1697.
    [26] Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene[J].Nature Materials,2012,11(9): 759-763.
    [27] Thurston R N, Brugger K. Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media[J].Physical Review,1964,135(6A): 1604-1610.
    [28] Liu F, Ming P, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J].Physical Review B,2007,76(6): 064120.
    [29] Khare R, Mielke S L, Paci J T, Zhang S, Ballarini R, Schatz G C, Belytschko T. Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets[J].Physical Review B,2007,75(7): 075412.
    [30] Komaragiri U, Begley M R, Simmonds J G. The mechanical response of freestanding circular elastic films under point and pressure loads[J].Journal of Applied Mechanics,2005,72(2): 203-212.
    [31] Begley M R, Mackin T J. Spherical indentation of freestanding circular thin films in the membrane regime[J].Journal of the Mechanics and Physics of Solids,2004,52(9): 2005-2023.
    [32] Wan K T, Guo S, Dillard D A. A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress[J].Thin Solid Films,2003,425(1/2): 150-162.
    [33] Landau L D, Lifshitz E M, Pitaevskii L P, Kosevich A M.Theory of Elasticity [M]. Oxford: Pergamon Press, 1986.
    [34] Neek-amal M, Peeters F M. Nanoindentation of a circular sheet of bilayer graphene[J].Physical Review B,2010,81(23): 235421.
    [35] 靳从睿. 圆薄膜受中心集中力的大变形[J]. 应用数学和力学, 2008,29(7): 806-812.(JIN Cong-rui. Large deflection of circular membrane under concentrated force[J].Applied Mathematics and Mechanics,2008,29(7): 806-812.(in Chinese))
    [36] Tan X J, Wu J, Zhang K, Peng X, Sun L, Zhong J. Nanoindentation models and Young’s modulus of monolayer graphene: a molecular dynamics study[J].Applied Physics Letters,2013,102(7): 071908.
    [37] Bhatia M M, Nachbar W. Finite indentation of an elastic membrane by a spherical indenter[J].International Journal of Non-Linear Mechanics,1968,3(3): 307-324.
  • 加载中
计量
  • 文章访问数:  849
  • HTML全文浏览量:  24
  • PDF下载量:  874
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 修回日期:  2016-05-23
  • 刊出日期:  2016-09-15

目录

    /

    返回文章
    返回