留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有功能梯度加强环的有限尺寸开孔板应力集中问题

杨权权 朱为国 刘飞

杨权权, 朱为国, 刘飞. 具有功能梯度加强环的有限尺寸开孔板应力集中问题[J]. 应用数学和力学, 2016, 37(11): 1239-1246. doi: 10.21656/1000-0887.370131
引用本文: 杨权权, 朱为国, 刘飞. 具有功能梯度加强环的有限尺寸开孔板应力集中问题[J]. 应用数学和力学, 2016, 37(11): 1239-1246. doi: 10.21656/1000-0887.370131
YANG Quan-quan, ZHU Wei-guo, LIU Fei. Stress Concentration in Finite Plates With Functionally Graded Rings Around Circular Holes[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1239-1246. doi: 10.21656/1000-0887.370131
Citation: YANG Quan-quan, ZHU Wei-guo, LIU Fei. Stress Concentration in Finite Plates With Functionally Graded Rings Around Circular Holes[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1239-1246. doi: 10.21656/1000-0887.370131

具有功能梯度加强环的有限尺寸开孔板应力集中问题

doi: 10.21656/1000-0887.370131
基金项目: 国家自然科学基金青年科学基金(11502090);江苏省高校自然科学研究面上项目(15KJB130001)
详细信息
    作者简介:

    杨权权(1984—),男,讲师,博士(通讯作者. E-mail: qqyang@hyit.edu.cn).

  • 中图分类号: O341

Stress Concentration in Finite Plates With Functionally Graded Rings Around Circular Holes

Funds: The National Science Fund for Young Scholars of China(11502090)
  • 摘要: 基于复变函数理论,结合最小二乘边界配点法,对具有功能梯度加强环的有限尺寸开孔板在任意均布载荷作用下的应力集中问题进行了研究.首先,采用分层均匀化方法,给出了材料参数沿径向任意变化的功能梯度加强环内的复势及孔边应力的半解析解;然后,通过几组数值算例,讨论了组分梯度、加强环厚度、板相对尺寸及偏心率的变化对孔边应力集中的影响.结果表明,通过合理选择功能梯度加强环内材料参数的递变规律及加强环的厚度,可以有效缓解有限尺寸开孔板内的应力集中.
  • [1] Zhang X Z, Kitipornchai S, Liew K M, Lim C W, Peng L X. Thermal stresses around a circular hole in a functionally graded plate[J]. Journal of Thermal Stresses,2003,26(4): 379-390.
    [2] Fang X Q, Hu C, Du S Y. Strain energy density of a circular cavity buried in semi-infinite functionally graded materials subjected to shear waves[J]. Theoretical and Applied Fracture Mechanics,2006,46(2): 166-174.
    [3] FANG Xue-qian, HU Chao, DU Shan-yi. Dynamic stress of a circular cavity buried in a semi-infinite functionally graded material subjected to shear waves[J]. Journal of Applied Mechanics,2007,74(5): 916-922.
    [4] Kubair D V, Bhanu-Chandar B. Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension[J]. International Journal of Mechanical Sciences,2008,50(4): 732-742.
    [5] YANG Quan-quan, GAO Cun-fa, CHEN Wen-tao. Stress analysis of a functional graded material plate with a circular hole[J]. Archive of Applied Mechanics,2010,80(8): 895-907.
    [6] YANG Quan-quan, GAO Cun-fa. Non-axisymmetric thermal stress around a circular hole in a functionally graded infinite plate[J]. Journal of Thermal Stresses,2010,33(4): 318-334.
    [7] Mohammadi M, Dryden J R, JIANG Li-ying. Stress concentration around a hole in a radially inhomogeneous plate[J]. International Journal of Solids and Structures,2011,48(3/4): 483-491.
    [8] Ashrafi H, Asemi K, Shariyat M. A three-dimensional boundary element stress and bending analysis of transversely/longitudinally graded plates with circular cutouts under biaxial loading[J]. European Journal of Mechanics A—Solids,2013,42: 344-357.
    [9] ZHOU Chuan-ping, HU Chao, MA Fai, LIU Dian-kui. Elastic wave scattering and dynamic stress concentrations in exponential graded materials with two elliptic holes[J]. Wave Motion,2014,51(3): 466-475.
    [10] YANG Zai-lin, HEI Bao-ping, WANG Yao. Scattering by circular cavity in radially inhomogeneous medium with wave velocity variation[J]. Applied Mathematics and Mechanics(English Edition),2015,36(5): 599-608.
    [11] Kubair D V. Stress concentration factors and stress-gradients due to circular holes in radially functionally graded panels subjected to anti-plane shear loading[J]. Acta Mechanica,2013,224(11): 2845-2862.
    [12] Kubair D V. Stress concentration factor in functionally graded plates with circular holes subjected to anti-plane shear loading[J]. Journal of Elasticity,2014,114(2): 179-196.
    [13] Yang B, Chen W Q, Ding H J. 3D elasticity solutions for equilibrium problems of transversely isotropic FGM plates with holes[J]. Acta Mechanica,2015,226(5): 1571-1590.
    [14] Sburlati R. Stress concentration factor due to a functionally graded ring around a hole in an isotropic plate[J]. International Journal of Solids and Structures,2013,50(22/23): 3649-3658.
    [15] Sburlati R, Atashipour S R, Atashipour S A. Reduction of the stress concentration factor in a homogeneous panel with hole by using a functionally graded layer[J]. Composites Part B,2014,61: 99-109.
    [16] Muskhelishvili N I.Some Basic Problem of Mathematical Theory of Elasticity [M]. Leyden: Noordhoff International Publishing, 1975.
  • 加载中
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  160
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-28
  • 修回日期:  2016-07-15
  • 刊出日期:  2016-11-15

目录

    /

    返回文章
    返回