留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正压大气模式下大地形和β变化的Rossby波

宋健 刘全生 杨联贵

宋健, 刘全生, 杨联贵. 正压大气模式下大地形和β变化的Rossby波[J]. 应用数学和力学, 2017, 38(2): 216-223. doi: 10.21656/1000-0887.370135
引用本文: 宋健, 刘全生, 杨联贵. 正压大气模式下大地形和β变化的Rossby波[J]. 应用数学和力学, 2017, 38(2): 216-223. doi: 10.21656/1000-0887.370135
SONG Jian, LIU Quan-sheng, YANG Lian-gui. Rossby Waves Excited by Large Topography and Beta Change in Barotropic Atmosphere[J]. Applied Mathematics and Mechanics, 2017, 38(2): 216-223. doi: 10.21656/1000-0887.370135
Citation: SONG Jian, LIU Quan-sheng, YANG Lian-gui. Rossby Waves Excited by Large Topography and Beta Change in Barotropic Atmosphere[J]. Applied Mathematics and Mechanics, 2017, 38(2): 216-223. doi: 10.21656/1000-0887.370135

正压大气模式下大地形和β变化的Rossby波

doi: 10.21656/1000-0887.370135
基金项目: 国家自然科学基金(11362012;11562014;41465002)
详细信息
    作者简介:

    宋健(1970—),男,副教授,博士(E-mail: songjian@imut.edu.cn);刘全生(1978—),男,副教授,博士(通讯作者. E-mail: smslqs@imu.edu.cn).

  • 中图分类号: O351; P433

Rossby Waves Excited by Large Topography and Beta Change in Barotropic Atmosphere

Funds: The National Natural Science Foundation of China(11362012; 11562014; 41465002)
  • 摘要: 在正压大气模式下从准地转位涡方程出发,考虑地形和β随纬度变化下引进参数δ对Rossby波的共同作用,应用正交模方法得到在中高纬度具有大地形、Froude数以及参数δ的Rossby波相速度公式; 分析β变化下大地形和Froude数对Rossby波稳定度的影响,表明大地形、Froude数和参数δ对Rossby波的稳定性作用.
  • [1] 刘萍, 李子良, 楼森岳. 一类耦合非线性Schrdinger方程的Painlevé性质、严格解及其大气重力波重的应用[J]. 应用数学和力学, 2010,31(11): 1308-1329.(LIU Ping, LI Zi-liang, LOU Sen-yue. A class of coupled nonlinear Schrdinger equation: Painlevé property, exact solutions and application to atmospheric gravity waves[J]. Applied Mathematics and Mechanics,2010,31(11): 1308-1329.(in Chinese))
    [2] 刘式适, 刘式达. 大气动力学[M]. 北京: 北京大学出版社, 2008: 462-475.(LIU Shi-kuo, LIU Shi-da. Atmospheric Dynamics [M]. Beijing: Peking University Press, 2008: 462-475.(in Chinese))
    [3] 罗德海. 大气中大尺度包洛孤立子理论与阻塞环流[M]. 北京: 气象出版社, 1999.(LUO De-hai. Envelope Rossby Solitons in the Large-Scale Atmosphere and Blocking Circulations [M]. Beijing: China Meteorological Press, 1999.(in Chinese)
    [4] Charney J G, Straus D M. From-drag instability multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems[J]. Journal of the Atmospheric Sciences,1980,37(6): 1157-1176.
    [5] Hart J E. Barotropic quasi-geostrophic flow over anisotropic mountains[J]. Journal of the Atmospheric Sciences,1979,36(9): 1736-1746.
    [6] Grose W L, Hoskins B J. On the influence of orography on large-scale atmospheric flow[J]. Journal of the Atmospheric Sciences,1979, 36(2): 223-234.
    [7] Davey M K. A quasi-linear theory for rotating flow over topography—part 1: steady β-plane channel[J]. Journal of Fluid Mechanics,1980,99(2): 267-292.
    [8] Davey M K. A quasi-linear theory for rotating flow over topography—part 2: beta-plane annulus[J]. Journal of Fluid Mechanics,1981,103: 297-320.
    [9] Gottwald G, Grimshaw R. The effect of topography on the dynamics of interacting solitary waves in the context of atmospheric blocking[J]. Journal of the Atmospheric Sciences,1999,56(21): 3663-3678.
    [10] 李子良, 傅刚, 郭敬天, 等. 岛屿地形对极地低压和热带气旋发展的线性理论模型和观测资料分析[J]. 应用数学和力学, 2009,30(10): 1189-1201.(LI Zi-liang, FU Gang, GUO Jing-tian, et al. Topographic effects on polar low and tropical cyclone development in a simple theoretical model[J]. Applied Mathematics and Mechanics,2009,30(10): 1189-1201.(in Chinese))
    [11] Wingate B A, Embid P, Holmes-Cerfon M, et al. Low Rossby limiting dynamics for stably stratified flow with finite Froude number[J]. Journal of Fluid Mechanics,2011,676(69): 546-571.
    [12] 熊建刚, 易帆, 李钧. 地形对正压大气Rossby波非线性相互作用的影响[J]. 应用数学和力学, 1994,15(6): 555-563.(XIONG Jian-gang, YI Fan, LI Jun. The influence of topography on the nonlinear interaction of Rossby waves in the barotropic atmosphere[J]. Applied Mathematics and Mechanics,1994,15(6): 555-563.(in Chinese))
    [13] 吕克利. 大地形与正压Rossby孤立波[J]. 气象学报, 1987,45(3): 267-273.(L Ke-li. The effects of orography on the solitary Rossby waves in a barotropic atmosphere[J]. Acta Meteorologica Sinica,1987,45(3): 267-273.(in Chinese))
    [14] 吕克利. 大地形与正压Rossby孤立波——弱二次切变基本气流[J]. 气象学报, 1988,〖STHZ〗 46(4): 412-420.(L Ke-li. Large orography and barotropic solitary Rossby waves—weak quadric shearing basic flow[J]. Acta Meteorologica Sinica , 1988,〖STHZ〗 46(4): 412-420.(in Chinese))
    [15] 刘式适, 谭本馗. 考虑β变化下的Rossby波[J]. 应用数学和力学, 1992,〖STHZ〗 13(1): 35-44.(LIU Shi-kuo, TAN Ben-kui. Rossby waves with the change of β[J]. Applied Mathematics and Mechanics,1992,13(1): 35-44.(in Chinese))
    [16] 罗德海. 考虑β随纬度变化下的Rossby孤立波与偶极子阻塞[J]. 应用气象学报, 1995, 6(2): 220-227.(LUO De-hai. Solitary Rossby waves with the beta parameter and dipole blocking[J]. Quarterly Journal of Applied Meteorology,1995,6(2): 220-227.(in Chinese))
    [17] Pedlosky J. Geophysical Fluid Dynamics[M]. New York: Springer-Verlag New York Inc, 1987: 108-109.
    [18] Kuo H L. Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere[J]. Journal of the Atmospheric Sciences,1949,6(2): 105-122.
  • 加载中
计量
  • 文章访问数:  662
  • HTML全文浏览量:  45
  • PDF下载量:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 修回日期:  2016-07-02
  • 刊出日期:  2017-02-15

目录

    /

    返回文章
    返回