留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Navier-Stokes方程最优控制问题的一种非协调有限元局部稳定化方法

覃燕梅 李辉 冯民富

覃燕梅, 李辉, 冯民富. Navier-Stokes方程最优控制问题的一种非协调有限元局部稳定化方法[J]. 应用数学和力学, 2016, 37(8): 842-855. doi: 10.21656/1000-0887.370137
引用本文: 覃燕梅, 李辉, 冯民富. Navier-Stokes方程最优控制问题的一种非协调有限元局部稳定化方法[J]. 应用数学和力学, 2016, 37(8): 842-855. doi: 10.21656/1000-0887.370137
QIN Yan-mei, LI Hui, FENG Min-fu. A Local Stabilized Nonconforming Finite Element Method for the Optimal Control of Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2016, 37(8): 842-855. doi: 10.21656/1000-0887.370137
Citation: QIN Yan-mei, LI Hui, FENG Min-fu. A Local Stabilized Nonconforming Finite Element Method for the Optimal Control of Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 2016, 37(8): 842-855. doi: 10.21656/1000-0887.370137

Navier-Stokes方程最优控制问题的一种非协调有限元局部稳定化方法

doi: 10.21656/1000-0887.370137
基金项目: 国家自然科学基金(11271273);四川省教育厅自然科学基金(16ZB0300;14ZA0244)
详细信息
    作者简介:

    覃燕梅(1980—),女,副教授,硕士(E-mail: qinyanmei0809@163.com);冯民富(1964—),男,教授,博士生导师(通讯作者. E-mail: fmf@wtjs.cn).

  • 中图分类号: O241.82

A Local Stabilized Nonconforming Finite Element Method for the Optimal Control of Navier-Stokes Equations

Funds: The National Natural Science Foundation of China(11271273)
  • 摘要: 基于局部Gauss积分和梯形外推公式,速度/压力空间采用最低等阶非协调元NCP1-P1逼近,针对非定常Navier-Stokes方程最优控制问题,建立了一种全离散的非协调有限元局部稳定化格式.该格式绕开了inf-sup条件的束缚,且在每一时间步上,只需要做线性计算,减少了计算量.证明了该格式是无条件稳定的,给出了详细的误差分析.误差结果表明,该线性格式在时间上具有二阶精度.
  • [1] 石荣. Navier-Stokes方程组的最优控制问题[J]. 江汉大学学报(自然科学版), 2009,37(3): 20-24.(SHI Rong. Optimal control problems of Navier-Stokes equations[J].Journal of Jianghan University(Natural Sciences),2009,37(3): 20-24.(in Chinese))
    [2] Brooks A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,1982,32(1/3): 199-259.
    [3] ZHOU Tian-xiao, FENG Min-fu. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J].Mathematics of Computation,1993,60(202): 531-543.
    [4] Layton W. A connection between subgrid scale eddy viscosity and mixed methods[J].Applied Mathematics and Computation,2002,133(1): 147-157.
    [5] FENG Min-fu, BAI Yan-hong, HE Yin-nian, QIN Yan-mei. A new stabilized subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations[J].Journal of Computational Mathematics,2011,29(4): 415-440.
    [6] Becker R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J].Calcolo,2001,38(4): 173-199.
    [7] Douglas J, Wang J. An absolutely stabilized finite element method for the Stokes problem[J].Mathematics of Computation,1989,52(186): 495-508.
    [8] Bochev P B, Dohrman C R, Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J].SIAM Journal on Numerical Analysis,2006,44(1): 82-101.
    [9] Burman E. Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem[J].Numerical Methods for Partial Differential Equations,2008,24(1): 127-143.
    [10] 覃燕梅, 冯民富, 罗鲲, 吴开腾. Navier-Stokes方程的局部投影稳定化方法[J]. 应用数学和力学, 2010,31(5): 618-630.(QIN Yan-mei, FENG Min-fu, LUO Kun, WU Kai-teng. Local projection stabilized finite element method for Navier-Stokes equations[J].Applied Mathematics and Mechanics,2010,31(5): 618-630.(in Chinese))
    [11] Codina R. Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales[J].Applied Numerical Mathematics,2008,58(3): 264-283.
    [12] LI Jian, HE Yin-nian. A stabilized finite element method based on two local Gauss integrations for the Stokes equations[J].Journal of Computational and Applied Mathematics,2008,214(1): 58-65.
    [13] HE Yin-nian, LI Jian. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J].Applied Numerical Mathematics,2008,58(10): 1503-1514.
    [14] LI Jian, HE Yin-nian, CHEN Zhang-xin. A new stabilized finite element method for the transient Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,2007,197(1/4): 22-35.
    [15] LI Jian, CHEN Zhang-xin. A new local stabilized nonconforming finite element method for the Stokes equations[J].Computing,2008,82(2): 157-170.
    [16] JING Fei-fei, SU Jian, ZHANG Xiao-xu, LIU Xiao-min. Characteristic stabilized nonconforming finite element method for the unsteady incompressible Navier-Stokes equations[J].Chinese Journal of Engineering Mathematics,2014,31(5): 764-778.
    [17] Abergel F, Temam R. On some control problems in fluid mechanics[J].Theoretical and Computational Fluid Dynamics,1990,1(6): 303-325.
    [18] Gunzburger M, Manservisi S. Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control[J].SIAM Journal on Numerical Analysis,2000,37(5): 1481-1512.
    [19] WANG Geng-sheng. Optimal controls of 3-dimensional Navier-Stokes equations with state constraints[J].SIAM Journal on Control and Optimization,2002,41(2): 583-606.
    [20] Gunzburger M D, Hou L, Svobodny T P. Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls[J].Mathematics of Computation,1991,57(195): 123-151.
    [21] Wachsmuth D. Sufficient second-order optimality conditions for convex control constraints[J].Journal of Mathematical Analysis and Applications,2006,319(1): 228-247.
    [22] CHEN Gang, FENG Min-fu. Subgrid scale eddy viscosity finite element method on optimal control of system governed by unsteady Oseen equations[J].Computational Optimization and Applications,2014,58(3): 679-705.
    [23] Braack M. Optimal control in fluid mechanics by finite elements with symmetric stabilization[J].PAMM,2008,8(1): 10945-10946.
    [24] Yilmaz F. Semi-discrete a priori error analysis for the optimal control of the unsteady Navier-Stokes equations with variational multiscale stabilization[J].Applied Mathematics and Computation,2016,276: 127-142.
    [25] Heywood J G, Rannacher R. Finite-element approximation of the nonstationary Navier-Stokes problem—part IV: error estimates for second-order error estimates for spatial discretization[J].SIAM Journal on Numerical Analysis,1990,27(2): 353-384.
    [26] Girault V, Raviart P A.Finite Element Approximation of the Navier-Stokes Equations [M].Lecture Notes in Mathematics,749. Berlin: Springer, 1974.
    [27] HE Yin-nian. Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations[J].SIAM Journal on Numerical Analysis,2003,41(4): 1263-1285.
  • 加载中
计量
  • 文章访问数:  880
  • HTML全文浏览量:  23
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-05
  • 修回日期:  2016-06-20
  • 刊出日期:  2016-08-15

目录

    /

    返回文章
    返回