留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无网格介点法:一种具有h-p-d适应性的无网格法

杨建军 郑健龙

杨建军, 郑健龙. 无网格介点法:一种具有h-p-d适应性的无网格法[J]. 应用数学和力学, 2016, 37(10): 1013-1025. doi: 10.21656/1000-0887.370159
引用本文: 杨建军, 郑健龙. 无网格介点法:一种具有h-p-d适应性的无网格法[J]. 应用数学和力学, 2016, 37(10): 1013-1025. doi: 10.21656/1000-0887.370159
YANG Jian-jun, ZHENG Jian-long. A Meshless Intervention-Point Method With h-p-d Adaptability[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1013-1025. doi: 10.21656/1000-0887.370159
Citation: YANG Jian-jun, ZHENG Jian-long. A Meshless Intervention-Point Method With h-p-d Adaptability[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1013-1025. doi: 10.21656/1000-0887.370159

无网格介点法:一种具有h-p-d适应性的无网格法

doi: 10.21656/1000-0887.370159
基金项目: 国家自然科学基金(51478053)
详细信息
    作者简介:

    杨建军(1975—),男,讲师,博士,硕士生导师(通讯作者. E-mail: yangjianjun01@126.com);郑健龙(1954—),男,教授,博士,博士生导师,工程院院士.

  • 中图分类号: O241; O343

A Meshless Intervention-Point Method With h-p-d Adaptability

Funds: The National Natural Science Foundation of China(51478053)
  • 摘要: 提出了一种新型无网格法,即无网格介点(MIP)法.MIP法采用移动最小二乘核近似,有利于提高数值方法的计算稳定性,而且算法更为简便.MIP法采用局部介点近似技术,使得这种方法不仅具有一般的h适应性,而且具有p-d适应性,从而使方法在数值实施上更具有灵活性.数值算例结果表明,MIP法具有计算简单,效率高,精度高的优点,而且显示出对多种求解问题具有广泛适用的特性.
  • [1] YANG Jian-jun, ZHENG Jian-long. Intervention-point principle of meshless method[J]. Chinese Science Bulletin,2013,58(4/5): 478-485.
    [2] Li S, Liu W K. Meshfree and particle methods and their applications[J]. Applied Mechanics Reviews,2002,55(1): 1-34.
    [3] Jensen P S. Finite difference techniques for variable grids[J]. Computers & Structures,1972,2(1/2): 17-29.
    [4] Perrone N, Kao R. A general finite difference method for arbitrary meshes[J]. Computers & Structures,1975,5(1): 45-57.
    [5] Liszka T, Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics[J]. Computers & Structures,1980,11(1/2): 83-95.
    [6] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal,1977,82: 1013-1024.
    [7] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society,1977,181(3): 375-389.
    [8] Belytschko T, Krongauz Y, Organ D, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering,1996,139(1/4): 3-47.
    [9] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements[J]. Computational Mechanics,1992,10(5): 307-318.
    [10] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering,1994,37(2): 229-256.
    [11] Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[J]. Computational Mechanics,1998,22(2): 117-127.
    [12] 张雄, 刘岩, 马上. 无网格法的理论及应用[J]. 力学进展, 2009,39(1): 1-36.(ZHANG Xiong, LIU Yan, MA Shang. Meshfree methods and their applications[J]. Advances in Mechanics,2009,39(1): 1-36.(in Chinese))
    [13] 杨建军, 郑健龙. 移动最小二乘法的近似稳定性[J]. 应用数学学报, 2012,35(4): 637-648.(YANG Jian-jun, ZHENG Jian-long. Stability of moving least squares approximation[J]. Acta Mathematicae Applicatae Sinica,2012,35(4): 637-648.(in Chinese))
    [14] Breitkopf P, Touzot G, Villon P. Double grid diffuse collocation method[J]. Computational Mechanics,2000,25(2): 199-206.
    [15] Timoshenko S P, Goodier J N. Theory of Elasticity [M]. 3rd ed. McGraw-Hill Book Company, 1970.
    [16] Onate E, Idelsohn S, Zienkiewicz O C, Taylor R L. A finite point method in computational mechanics. Applications to convective transport and fluid flow[J]. International Journal for Numerical Methods in Engineering,1996,39(22): 3839-3866.
    [17] 韩治, 杨海天, 王斌. 无网格伽辽金法求解轴对称问题[J]. 工程力学, 2005,22(5): 64-68.(HAN Zhi, YANG Hai-tian, WANG Bin. Solving axisymmetric problems via EFGM[J]. Engineering Mechanics,2005,22(5): 64-68.(in Chinese))
    [18] 陈建桥, 梁元博, 丁亮. 无网格局部Petrov-Galerkin法求解轴对称问题[J]. 华中科技大学学报(城市科学版), 2007,24(4): 9-12.(CHEN Jian-qiao, LIANG Yuan-bo, DING Liang. Numerical analysis of axisymmetric problems by MLPG[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition),2007,24(4): 9-12.(in Chinese))
    [19] 杨建军, 郑健龙. 无网格MLPG法求解轴对称弹性力学问题[J]. 工程力学, 2012,29(8): 8-13.(YANG Jian-jun, ZHENG Jian-long. Analysis of axisymmetric elasticity problems using the meshless local Petrov-Galerkin method[J]. Engineering Mechanics,2012,29(8): 8-13.(in Chinese))
    [20] 程玉民, 彭妙娟, 李九红. 复变量移动最小二乘法及其应用[J]. 力学学报, 2005,37(6): 719-723.(CHENG Yu-min, PENG Miao-juan, LI Jiu-hong. The complex variable moving least-square approximation and its application[J]. Chinese Journal of Theoretical and Applied Mechanics,2005,37(6): 719-723.(in Chinese))
    [21] 孙新志, 李小林. 复变量移动最小二乘近似在Sobolev空间中的误差估计[J]. 应用数学和力学, 2016,37(4): 416-425.(SUN Xin-zhi, LI Xiao-lin. Error estimates for the complex variable moving least square approximation in Sobolev spaces[J]. Applied Mathematics and Mechanics,2016,37(4): 416-425.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1779
  • HTML全文浏览量:  77
  • PDF下载量:  1321
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-23
  • 修回日期:  2016-06-10
  • 刊出日期:  2016-10-15

目录

    /

    返回文章
    返回