留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具有非线性传染率的SEIS传染病模型的稳定性分析

邢伟 颜七笙 杨志辉 高晋芳

邢伟, 颜七笙, 杨志辉, 高晋芳. 一类具有非线性传染率的SEIS传染病模型的稳定性分析[J]. 应用数学和力学, 2016, 37(11): 1247-1254. doi: 10.21656/1000-0887.370166
引用本文: 邢伟, 颜七笙, 杨志辉, 高晋芳. 一类具有非线性传染率的SEIS传染病模型的稳定性分析[J]. 应用数学和力学, 2016, 37(11): 1247-1254. doi: 10.21656/1000-0887.370166
XING Wei, YAN Qi-sheng, YANG Zhi-hui, GAO Jin-fang. Stability Analysis of an SEIS Epidemic ModelWith a Nonlinear Incidence Rate[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1247-1254. doi: 10.21656/1000-0887.370166
Citation: XING Wei, YAN Qi-sheng, YANG Zhi-hui, GAO Jin-fang. Stability Analysis of an SEIS Epidemic ModelWith a Nonlinear Incidence Rate[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1247-1254. doi: 10.21656/1000-0887.370166

一类具有非线性传染率的SEIS传染病模型的稳定性分析

doi: 10.21656/1000-0887.370166
基金项目: 江西省教育厅科学技术研究项目(GJJ14469;GJJ150600);江西省高等学校教学改革研究项目(JXJG-15-6-22)
详细信息
    作者简介:

    邢伟(1988—), 男,硕士(通讯作者. E-mail: xingwei@ecit.cn).

  • 中图分类号: O175.12

Stability Analysis of an SEIS Epidemic ModelWith a Nonlinear Incidence Rate

  • 摘要: 研究了一类具有非线性传染率的SEIS模型,模型中包含常数输入率、自然死亡率、因病死亡率等.定义了模型的基本再生数R0,并证明了当R0<1时,无病平衡点是全局渐近稳定的.当R0>1时,得到了唯一的地方平衡点是全局渐近稳定的条件.
  • [1] Hethcote H W. The mathematics of infectious disease[J]. SIAM Review, 2000, 42(2): 599-653.
    [2] 刘华, 吴承强. 具有非线性传染率的SEIS传染病模型的分析[J]. 福州大学学报(自然科学报), 2010,38(6): 803-807.(LIU Hua, WU Cheng-qiang. The analysis of SEIS epidemic model with nonlinear incidence rate[J]. Journal of Fuzhou University(Natural Science),2010,38(6): 803-807.(in Chinese))
    [3] 王拉娣, 李建全. 一类带有非线性传染率的SEIS传染病模型的定性分析[J]. 应用数学和力学, 2006, 27(5): 591-596.(WANG La-di, LI Jian-quan. Qualitative analysis of an SEIS epidemic model with nolinear incidence rate[J]. Applied Mathematics and Mechanics, 2006, 27(5): 591-596.(in Chinese))
    [4] 杨瑜, 王健. 具有非线性发生率的SEIS模型的定性分析[J]. 生物数学学报, 2014, 29(4): 744-750.(YANG Yu, WANG Jian. Qualitative analysis of an SEIS model with nolinear incidence rate[J]. Jouranal of Biomathematics, 2014, 29(4): 744-750.(in Chinese))
    [5] 郭金生, 祝进业, 唐玉玲. 一类具有非线性传染率的SEIS传染病模型的定性分析[J]. 贵州大学学报(自然科学报), 2013,30(5): 4-8.(GUO Jin-sheng, ZHU Jin-ye, TANG Yu-ling. A qualitative analysis of an SEIS epidemic model with nonlinear incidence rate[J]. Journal of Guizhou University (Natural Science),2013,30(5): 4-8.(in Chinese))
    [6] SHU Hong-ying, WANG Lin, Watmough J. Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses[J]. SIAM Journal on Applied Mathematics, 2013, 73(3): 1280-1302.
    [7] TIAN Yan-ni, LIU Xian-ning. Global dynamics of a virus dynamical model with general incidence rate and cure rate[J]. Nonlinear Analysis: Real World Applications, 2014, 16: 17-26.
    [8] Li M Y, Graef J R, WANG Lian-cheng, Karsa J. Global dynamics of a SEIR model with varying total population size[J]. Mathematical Biosciences,1999,160(2): 191-213.
    [9] 马知恩, 周义仓, 王稳地. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004: 147-151.(MA Zhi-en, ZHOU Yi-chang, WANG Wen-di. The Research on Epidemic Models [M]. Beijing: Science Press, 2004: 147-151.(in Chinese))
    [10] Kamgang J C, Sallet G. Computation of threshold conditions for epidemiological models and global stability of the disease free equilibrium(DFE)[J]. Mathematical Biosciences, 2008, 213(1): 1-12.
    [11] 孟新柱, 陈兰荪, 宋治涛. 一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J]. 应用数学和力学, 2007, 28(9): 1123-1135.(MENG Xing-zhu, CHEN Lan-sun, SONG Zhi-tao. Global dynamical behaviors for an SEIR epidemic model with time delay and pulse vaccination[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1123-1135.(in Chinese))
    [12] 谢英超, 程燕, 贺天宇. 一类具有非线性发生率的时滞传染病模型的全局稳定性[J]. 应用数学和力学, 2015, 36(10): 1107-1117.(XIE Ying-chao, CHEN Yan, HE Tian-yu. Global stability of a class of delayed epidemic models with nonlinear incidence rates[J]. Applied Mathematics and Mechanics, 2015, 36(10):1107-1117.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1147
  • HTML全文浏览量:  160
  • PDF下载量:  670
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-26
  • 修回日期:  2016-10-09
  • 刊出日期:  2016-11-15

目录

    /

    返回文章
    返回