[1] |
Hethcote H W. The mathematics of infectious disease[J]. SIAM Review, 2000, 42(2): 599-653.
|
[2] |
刘华, 吴承强. 具有非线性传染率的SEIS传染病模型的分析[J]. 福州大学学报(自然科学报), 2010,38(6): 803-807.(LIU Hua, WU Cheng-qiang. The analysis of SEIS epidemic model with nonlinear incidence rate[J]. Journal of Fuzhou University(Natural Science),2010,38(6): 803-807.(in Chinese))
|
[3] |
王拉娣, 李建全. 一类带有非线性传染率的SEIS传染病模型的定性分析[J]. 应用数学和力学, 2006, 27(5): 591-596.(WANG La-di, LI Jian-quan. Qualitative analysis of an SEIS epidemic model with nolinear incidence rate[J]. Applied Mathematics and Mechanics, 2006, 27(5): 591-596.(in Chinese))
|
[4] |
杨瑜, 王健. 具有非线性发生率的SEIS模型的定性分析[J]. 生物数学学报, 2014, 29(4): 744-750.(YANG Yu, WANG Jian. Qualitative analysis of an SEIS model with nolinear incidence rate[J]. Jouranal of Biomathematics, 2014, 29(4): 744-750.(in Chinese))
|
[5] |
郭金生, 祝进业, 唐玉玲. 一类具有非线性传染率的SEIS传染病模型的定性分析[J]. 贵州大学学报(自然科学报), 2013,30(5): 4-8.(GUO Jin-sheng, ZHU Jin-ye, TANG Yu-ling. A qualitative analysis of an SEIS epidemic model with nonlinear incidence rate[J]. Journal of Guizhou University (Natural Science),2013,30(5): 4-8.(in Chinese))
|
[6] |
SHU Hong-ying, WANG Lin, Watmough J. Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses[J]. SIAM Journal on Applied Mathematics, 2013, 73(3): 1280-1302.
|
[7] |
TIAN Yan-ni, LIU Xian-ning. Global dynamics of a virus dynamical model with general incidence rate and cure rate[J]. Nonlinear Analysis: Real World Applications, 2014, 16: 17-26.
|
[8] |
Li M Y, Graef J R, WANG Lian-cheng, Karsa J. Global dynamics of a SEIR model with varying total population size[J]. Mathematical Biosciences,1999,160(2): 191-213.
|
[9] |
马知恩, 周义仓, 王稳地. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004: 147-151.(MA Zhi-en, ZHOU Yi-chang, WANG Wen-di. The Research on Epidemic Models [M]. Beijing: Science Press, 2004: 147-151.(in Chinese))
|
[10] |
Kamgang J C, Sallet G. Computation of threshold conditions for epidemiological models and global stability of the disease free equilibrium(DFE)[J]. Mathematical Biosciences, 2008, 213(1): 1-12.
|
[11] |
孟新柱, 陈兰荪, 宋治涛. 一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J]. 应用数学和力学, 2007, 28(9): 1123-1135.(MENG Xing-zhu, CHEN Lan-sun, SONG Zhi-tao. Global dynamical behaviors for an SEIR epidemic model with time delay and pulse vaccination[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1123-1135.(in Chinese))
|
[12] |
谢英超, 程燕, 贺天宇. 一类具有非线性发生率的时滞传染病模型的全局稳定性[J]. 应用数学和力学, 2015, 36(10): 1107-1117.(XIE Ying-chao, CHEN Yan, HE Tian-yu. Global stability of a class of delayed epidemic models with nonlinear incidence rates[J]. Applied Mathematics and Mechanics, 2015, 36(10):1107-1117.(in Chinese))
|