留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构动力响应中急动度的计算

李岩汀 徐绩青 许锡宾 蒲彦茹

李岩汀, 徐绩青, 许锡宾, 蒲彦茹. 结构动力响应中急动度的计算[J]. 应用数学和力学, 2017, 38(8): 922-931. doi: 10.21656/1000-0887.370181
引用本文: 李岩汀, 徐绩青, 许锡宾, 蒲彦茹. 结构动力响应中急动度的计算[J]. 应用数学和力学, 2017, 38(8): 922-931. doi: 10.21656/1000-0887.370181
LI Yan-ting, XU Ji-qing, XU Xi-bin, PU Yan-ru. A Numerical Method for Calculation of Structural Jerk Responses[J]. Applied Mathematics and Mechanics, 2017, 38(8): 922-931. doi: 10.21656/1000-0887.370181
Citation: LI Yan-ting, XU Ji-qing, XU Xi-bin, PU Yan-ru. A Numerical Method for Calculation of Structural Jerk Responses[J]. Applied Mathematics and Mechanics, 2017, 38(8): 922-931. doi: 10.21656/1000-0887.370181

结构动力响应中急动度的计算

doi: 10.21656/1000-0887.370181
基金项目: 重庆市教委科学技术研究项目(KJ100417)
详细信息
    作者简介:

    李岩汀(1993—),女,硕士生(E-mail: lijoan@outlook.com);徐绩青(1974—),男,副教授(通讯作者. E-mail: plappk@sina.com).

  • 中图分类号: O324;29

A Numerical Method for Calculation of Structural Jerk Responses

  • 摘要: 急动度(jerk)在工程实践中具有重要的意义.将径向基函数逼近与配点法相结合,发展了一种能够有效求解动力响应的数值算法.该方法使用径向基函数插值来逼近真实的运动规律,能够用于急动度和急动度(三阶)方程的计算,弥补了传统的数值方法无法计算急动度的不足.并针对微分方程的特点,提出了改进的多变量联合插值函数,同时添加与微分方程同阶的初值条件,可显著减小数值震荡.算例表明,该方法具有计算过程简单、精度高的特点,同时对急动度方程也有很好的适用性.
  • [1] 谈开孚, 赵永凯, 郭小弟. 谈加加速度[J]. 力学与实践, 1988,10(5): 46-51.(TAN Kai-fu, ZHAO Yong-kai, GUO Xiao-di. Sduty on jerk[J]. Mechanics in Engineering,1988,10(5): 46-51.(in Chinese))
    [2] 梅凤翔, 刘瑞, 罗勇. 高等分析力学[M]. 北京: 北京理工大学出版社, 1991: 251.(MEI Feng-xiang, LIU Rui, LUO Yong. Advanced Analytical Mechanics [M]. Beijing: Beijing Institute of Technology Press, 1991: 251.(in Chinese))
    [3] 黄沛天, 黄文, 胡利云. 关于变加速动力学及其应用[J]. 力学与实践, 2004, 26(1): 67-68.(HUANG Pei-tian, HUANG Wen, HU Li-yun. On non-uniformly accelerating dynamics and its application[J]. Mechanics in Engineering,2004, 26(1): 67-68.(in Chinese))
    [4] Chase J G, Barroso L R, Hunt S. Quadratic jerk regulation and the seismic control of civil structures[J]. Earthquake Engineering and Structural Dynamics,2003,32(13): 2047-2062.
    [5] 杨学山, 齐霄斋, 李兆治, 等. 基于测量加速度微分量的传感器[J]. 震动与冲击, 2008,27(12): 143-147.(YANG Xue-shan, QI Xiao-zhai, Lee G C, et al. Sensor for measuring the derivative of acceleration component[J]. Journal of Vibration and Shock,2008,27(12): 143-147.(in Chinese))
    [6] 何浩祥, 闫维明, 陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011,28(11): 124-129.(HE Hao-xiang, YAN Wei-ming, CHEN Yan-jiang. Study on concept and characteristics of seismic jerk response spectra[J]. Engineering Mechanics,2011,28(11): 124-129.(in Chinese))
    [7] AN Yong-hui, Hongki J, Jr Spencer B F, et al. A damage localization method based on the ‘jerk energy’[J]. Smart Materials and Structures,2014,23(2): 025020. doi: 10.1088/0964-1726/23/2/025020.
    [8] Bertero R D, Bertero V V. Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach[J]. Earthquake Engineering & Structural Dynamics,2002,31(3): 627-652.
    [9] HE Zheng, XU Yi-chao. Correlation between global damage and local damage of RC frame structures under strong earthquakes[J]. Structural Control and Healthy Monitoring,2017,24(3): e1877. doi: 10.1002/stc.1877.
    [10] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994,32(2): 131-136.(ZHONG Wan-xie. On precise time-integration method for structural dynamics[J]. Journal of Danlian University of Technology,1994,32(2): 131-136.(in Chinese))
    [11] 胡海岩. 应用非线性动力学[M]. 北京: 航空工业出版社, 2000.(HU Hai-yan. Applied Nonlinear Transient Dynamical [M]. Beijing: Aviation Industry Press, 2000.(in Chinese))
    [12] 吴宗敏. 径向基函数、散乱数据拟合与无网格偏微分方程数值解[J]. 工程数学学报, 2002,19(2): 1-12.(WU Zong-min. Radial basis function scattered data interprolation and the meshless method of numerical solution of PDEs[J]. Journal of Engineering Mathematics,2002,19(2): 1-12.(in Chinese))
    [13] 陈文, 傅卓佳, 魏星. 科学与工程计算中的径向基函数方法[M]. 北京: 科学出版社, 2014.(CHEN Wen, FU Zhuo-jia, WEI Xing. The Radial Basis Function Methods in Science and Engineering Mathematics [M]. Beijing: Science Press, 2014.(in Chinese))
    [14] WU Zong-min. Compactly supported positive definite radial functions[J]. Advances in Computational Mathematics,1995,4(1): 283-292.
    [15] Wendland H. Piecewise polynomial, positive definite and compactly supported Radial functions of minimal degree[J]. Advances in Computational Mathematics,1995,4(1): 389-396.
    [16] Buhmann M D. Radial functions on compact support[J]. Proceedings of the Edinburgh Mathematical Society,1998,41(1): 33-46.
    [17] 徐绩青, 李正良, 吴林键. 基于径向基函数逼近的结构动力响应计算方法[J]. 应用数学和力学, 2014,35(5): 533-541.(XU Ji-qing, LI Zheng-liang, WU Lin-jian. A calculation method for structural dynamic responses based on the approximation theory of radial basis function[J]. Applied Mathematics and Mechanics,2014,35(5): 533-541.(in Chinese))
    [18] 李岩汀, 许锡宾, 周世良, 等. 基于径向基函数逼近的非线性动力系统数值求解[J]. 应用数学和力学, 2016,37(3):311-318.(LI Yan-ting, XU Xi-bin, ZHOU Shi-liang, et al. A numerical approximation method for nonlinear dynamic systems based on radial basis functions[J]. Applied Mathematics and Mechanics,2016,37(3): 311-318.(in Chinese))
    [19] 汪梦甫, 周锡元. 结构动力方程的更新精细积分方法[J]. 力学学报, 2004,36(2): 191-195.(WANG Meng-fu, ZHOU Xi-yuan. Renewal precise time step integration method of structural dynamic analysis[J]. Acta Mechanica Sinica,2004,36(2): 191-195.(in Chinese))
    [20] 张继峰, 邓子辰, 张凯. 结构动力方程求解的改进精细Runge-Kutta方法[J]. 应用数学和力学, 2015,36(4): 378-385.(ZHANG Ji-feng, DENG Zi-chen, ZHANG Kai. An improved precise Runge-Kutta method for structural dynamic equations[J]. Applied Mathematics and Mechanics,2015,36(4): 378-385.(in Chinese))
    [21] Gottlieb H P W. Harmonic balance approach to periodic solutions of nonlinear jerk equations[J]. Journal of Sound and Vibration,2004,271(3/5): 671-683.
    [22] Wu B S, Lim C W, Sun W P. Improved harmonic balance approach to periodic solutions of non-linear jerk equations[J]. Physics Letters A,2006,354(1/2): 95-100.
    [23] Ramos J I. Analytical and approximate solutions to autonomous, nonlinear, third-order ordinary differential equations[J]. Nonlinear Analysis: Real World Applications,2010,11(3): 1613-1626.
  • 加载中
计量
  • 文章访问数:  797
  • HTML全文浏览量:  50
  • PDF下载量:  1014
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2017-03-01
  • 刊出日期:  2017-08-15

目录

    /

    返回文章
    返回