留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电渗流中传热传质过程与熵的分析

赵晓玲 杨大勇 王阳

赵晓玲, 杨大勇, 王阳. 电渗流中传热传质过程与熵的分析[J]. 应用数学和力学, 2017, 38(3): 310-320. doi: 10.21656/1000-0887.370182
引用本文: 赵晓玲, 杨大勇, 王阳. 电渗流中传热传质过程与熵的分析[J]. 应用数学和力学, 2017, 38(3): 310-320. doi: 10.21656/1000-0887.370182
ZHAO Xiao-ling, YANG Da-yong, WANG Yang. Analysis of the Heat and Mass Transfer Process and Entropy in Electroosmotic Flow[J]. Applied Mathematics and Mechanics, 2017, 38(3): 310-320. doi: 10.21656/1000-0887.370182
Citation: ZHAO Xiao-ling, YANG Da-yong, WANG Yang. Analysis of the Heat and Mass Transfer Process and Entropy in Electroosmotic Flow[J]. Applied Mathematics and Mechanics, 2017, 38(3): 310-320. doi: 10.21656/1000-0887.370182

电渗流中传热传质过程与熵的分析

doi: 10.21656/1000-0887.370182
基金项目: 国家自然科学基金(11302095)
详细信息
    作者简介:

    赵晓玲(1992—),女,硕士生(E-mail: zhaoxiaooling@sina.com);杨大勇(1978—),男,副教授,博士(通讯作者. E-mail: dayongyang@ncu.edu.cn).

  • 中图分类号: O351

Analysis of the Heat and Mass Transfer Process and Entropy in Electroosmotic Flow

Funds: The National Natural Science Foundation of China(11302095)
  • 摘要: 在壁面存在恒定热通量条件下,分析微通道内电渗流中传热传质过程与熵的生成.建立数值计算模型,分别采用Poisson-Boltzmann方程、Navier-Stokes方程、Nernst-Planck方程和能量方程来描述微通道内双电层电势、流场、离子浓度和温度的分布情况.引入熵产生,进一步研究不同流动参数对流体传热过程的作用,讨论不同流动参数下各热效应的变化规律,并具体分析热效应参数对流体总熵增加及各部分热效应对总熵比重的影响.结果表明,动电参数与Joule(焦耳)热系数的增大会使得传热性能减弱,动电参数对传热性能影响更为明显;流体的总熵为动电参数、传质系数和质量弥散系数的增函数.
  • [1] 林炳承, 秦建华. 微流控芯片实验室[M]. 北京: 科学出版社, 2006.(LIN Bing-cheng, QIN Jian-hua. Microfluidic Chip Laboratory [M]. Beijing: Science Press, 2006.(in Chinese))
    [2] 林炳承. 图解微流控芯片实验室[M]. 北京: 科学出版社, 2008.(LIN Bing-cheng. Graphic Microfluidic Chip Laboratory [M]. Beijing: Science Press, 2008.(in Chinese))
    [3] Mala G M, Li D, Dale J D. Heat transfer and fluid flow in microchannels[J]. International Journal of Heat and Mass Transfer,1997,40(13): 3079-3088.
    [4] Xuan X, Xu B, Sinton D, et al. Electroosmotic flow with Joule heating effects[J]. Lab on A Chip,2004,4(3): 230-236.
    [5] Maynes D, Webb B W. The effect of viscous dissipation in thermally fully-developed electro-osmotic heat transfer in microchannels[J]. International Journal of Heat and Mass Transfer,2004,47(5): 987-999.
    [6] Tang G Y, Yang C, Chai C K, et al. Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels[J]. Analytica Chimica Acta,2004,507(1): 27-37.
    [7] Bejan A. The thermodynamic design of heat and mass transfer processes and devices[J].International Journal of Heat and Fluid Flow,1987,8(4): 258-276.
    [8] Shamshiri M, Khazaeli R, Ashrafizaadeh M, et al. Heat transfer and entropy generation analyses associated with mixed electrokinetically induced and pressure-driven power-law microflows[J]. Energy,2012,42(1): 157-169.
    [9] Guo J, Xu M, Cai J, et al. Viscous dissipation effect on entropy generation in curved square microchannels[J]. Energy,2011,36(8): 5416-5423.
    [10] Ibáez G, López A, Pantoja J, et al. Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels[J]. Energy,2013,50(1):1926-1937.
    [11] Matin M H, Khan W A. Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure driven flow through a slit microchannel[J]. Energy,2013,56(56): 207-217.
    [12] 李战华, 吴健康, 胡国庆, 等. 微流控芯片中的流体流动[M]. 北京: 科学出版社, 2012.( LI Zhan-hua, WU Jian-kang, HU Guo-qing, et al. Fluid Flow in Microfluidic Chip [M]. Beijing: Science Press, 2012.(in Chinese))
    [13] Sadeghi A, Saidi M H. Viscous dissipation effects on thermal transport characteristics of combined pressure and electroosmotically driven flow in microchannels[J]. International Journal of Heat & Mass Transfer,2010,53(19/20): 3782-3791.
    [14] Sadeghi A, Yavari H, Saidi M H, et al. Mixed electroosmotically and pressure driven flow with temperature dependent properties[J]. Journal of Thermophysics & Heat Transfer,2011,25(3): 432-442.
    [15] 杨大勇, 王阳. 微通道中电渗流及微混合的离子浓度效应[J]. 应用数学和力学, 2015,36(9): 981-989.(YANG Da-yong, WANG Yang. The effect of ion concentration on the electro osmotic flow and micro mixing in micro channel[J]. Applied Mathematics and Mechanics,2015,36(9): 981-989.(in Chinese))
    [16] Bejan A. The thermodynamic design of heat and mass transfer processes and devices[J]. International Journal of Heat and Fluid Flow,1987,8(4): 258-276.
    [17] San J Y, Worek W M, Lavan Z. Entropy generation in combined heat and mass transfer[J]. International Journal of Heat and Mass Transfer,1987,30(7): 1359-1369.
    [18] Yavari H, Sadeghi A, Saidi M H, et al. Combined influences of viscous dissipation, non-uniform Joule heating and variable thermophysical properties on convective heat transfer in microtubes[J]. International Journal of Heat & Mass Transfer,2012,55(4): 762-772.
  • 加载中
计量
  • 文章访问数:  1001
  • HTML全文浏览量:  111
  • PDF下载量:  1071
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-07
  • 修回日期:  2016-08-17
  • 刊出日期:  2017-03-15

目录

    /

    返回文章
    返回