留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限体积法的非结构网格大涡模拟离散方法研究

熊英 关晖 吴锤结

熊英, 关晖, 吴锤结. 基于有限体积法的非结构网格大涡模拟离散方法研究[J]. 应用数学和力学, 2016, 37(11): 1129-1144. doi: 10.21656/1000-0887.370228
引用本文: 熊英, 关晖, 吴锤结. 基于有限体积法的非结构网格大涡模拟离散方法研究[J]. 应用数学和力学, 2016, 37(11): 1129-1144. doi: 10.21656/1000-0887.370228
XIONG Ying, GUAN Hui, WU Chui-jie. LES Discretization Methods for Unstructured Meshes Based on the Finite Volume Method[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1129-1144. doi: 10.21656/1000-0887.370228
Citation: XIONG Ying, GUAN Hui, WU Chui-jie. LES Discretization Methods for Unstructured Meshes Based on the Finite Volume Method[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1129-1144. doi: 10.21656/1000-0887.370228

基于有限体积法的非结构网格大涡模拟离散方法研究

doi: 10.21656/1000-0887.370228
基金项目: 国家自然科学基金(11572350);国家重点基础研究发展计划(973计划)(2014CB-744104)
详细信息
    作者简介:

    熊英(1978—),女,博士生(E-mail: yxiong_2011@163.com);吴锤结(1955—),男,教授(通讯作者. E-mail: cjwudut@dlut.edu.cn).

  • 中图分类号: O357.41

LES Discretization Methods for Unstructured Meshes Based on the Finite Volume Method

Funds: The National Natural Science Foundation of China(11572350);The National Basic Research Program of China (973 Program)(2014CB-744104)
  • 摘要: 非结构网格下的大涡模拟是解决复杂几何体高Reynolds(雷诺)数流动的有效途径.首先,基于有限体积法,研究了对流项和扩散项非结构网格下的离散方法.研究结果表明:基于TVD(total variation diminishing)限制器的限制中心差分格式保证了对流项的二阶精度并抑制了非物理振荡,同时,线性迎风格式虽然稳定, 但数值耗散过大, 且不能保证有界,中心差分格式引起了周期性非物理振荡; 扩散项的超松弛非正交修正减小了网格非正交带来的离散误差,但修正系数须根据网格非正交的程度进行合理选取. 为验证所述离散方法对大涡模拟的适用性,数值计算了Re=1.14×106下的非定常三维小球绕流,计算方法包括:计算网格用基于Delaunay三角剖分和Netgen前沿推进算法的四面体非结构网格;湍流模型用改进的延迟分离涡大涡模型;在离散格式的选取上,对流项用限制中心差分,扩散项加入非正交修正,插值格式用最小二乘法,时间项用二阶后向差分.计算结果表明,所用离散方法稳定收敛并且与实验数据基本吻合.
  • [1] Sigmund O, Bendse M P. Topology Optimization: Theory, Methods, and Applications [M]. Berlin: Springer, 2003: 25.
    [2] GUO Xu, CHENG Geng-dong. Recent development in structural design and optimization[J].Acta Mechanica Sinica,2010,26(6): 807-823.
    [3] Sigmund O, Maute K. Topology optimization approaches[J]. Structural & Multidisciplinary Optimization,2013,48(6): 1031-1055.
    [4] ZHU Ji-hong, ZHANG Wei-hong, XIA Liang. Topology optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering,2015: 1-28. doi: 10.1007/s11831-015-9151-2.
    [5] 许华旸, 关立文, 王立平, 陈祥. 惯性载荷下飞行模拟器大臂结构的拓扑优化[J]. 机械工程学报,2014,50(9): 14-23.(XU Hua-yang, GUAN Li-wen, WANG Li-ping, CHEN Xiang. Topology optimization for the arm of flight simulator under inertial loads[J]. Journal of Mechanical Engineering,2014,50(9): 14-23.(in Chinese))
    [6] 宋志强, 史青录, 彭万万, 陈贯祥. 拓扑优化在提高电机底座固有频率中的应用[J]. 机械工程与自动化, 2014(3): 8-10.(SONG Zhi-qiang, SHI Qing-lu, PENG Wan-wan, CHEN Guan-xiang. Application of topology optimization in improving natural frequency of motor base[J]. Journal of Mechanical Engineering & Automation,2014(3): 8-10.(in Chinese))
    [7] 左孔天, 陈立平, 张云清, 王书亭. 用拓扑优化方法进行热传导散热体的结构优化设计[J]. 机械工程学报, 2005,41(4): 13-16.(ZUO Kong-tian, CHEN Li-ping, ZHANG Yun-qing, WANG Shu-ting. Structural optimal design of heat conductive body with topology optimization method[J]. Chinese Journal of Mechanical Engineering,2005,41(4): 13-16.(in Chinese))
    [8] 张克明. 飞机生产中产生不协调问题的原因及解决办法[J]. 南京航空航天大学学报, 1995,27(2): 221-228.(ZHANG Ke-ming. Reason and solution of incoordinate problem occuring in aeroplane manufacture[J]. Journal of Nangjing University of Aeronautics & Astronautics,1995,27(2): 221-228.(in Chinese))
    [9] Huff J. Improving the service life of flight deck windshields[J]. Boeing Aero Magazine,2002,17: 3-9.
    [10] 苏雁飞, 谭申刚, 薛应举, 惠红军. 运输类飞机机身大开口结构加强方式理论研究[J]. 力学与实践, 2013,35(6): 59-64.(SU Yan-fei, TAN Shen-gang, XUE Ying-ju, HUI Hong-jun. The strengthening of aero-transport with large opening[J]. Mechanics in Engineering,2013,35(6): 59-64.(in Chinese))
    [11] ZUO Zhi-hao, XIE Yi-min. Evolutionary topology optimization of continuum structures with a global displacement control[J]. Computer-Aided Design,2014,56(11): 58-67.
    [12] Rong J H, Yi J H. A structural topological optimization method for multi-displacement constraints and any initial topology configuration[J]. Acta Mechanica Sinica,2010,26(5): 735-744.
    [13] 杨德庆, 隋允康, 刘正兴, 孙焕纯. 应力和位移约束下连续体结构拓扑优化[J]. 应用数学和力学,2000,21(1): 17-24.(YANG De-qing, SUI Yun-kang, LIU Zheng-xing, SUN Huan-chun. Topology optimization design of continuum structures under stress and displacement constraints[J]. Applied Mathematics and Mechanics, 2000,21(1): 17-24.(in Chinese))
    [14] 朱继宏, 李昱, 张卫红, 侯杰. 考虑多点保形的结构拓扑优化设计方法[J]. 航空学报, 2015,36(2): 518-526.(ZHU Ji-hong, LI Yu, ZHANG Wei-hong, HOU Jie. Structural topology optimization with multi-point shape-preserving constraint[J]. Acta Aeronautica et Astronautica Sinica,2015,36(2): 518-526.(in Chinese))
    [15] ZHU Ji-hong, LI Yu, ZHANG Wei-hong, HOU Jie. Shape preserving design with structural topology optimization[J]. Structural and Multidisciplinary Optimization,2015,53(4): 893-906.
    [16] Genberg V L. Optical performance criteria in optimum structural design[C]// Proceedings SPIE 3786, Optomechanical Engineering and Vibration Control,1999: 248-255. doi: 10.1117/12.363801.
    [17] Ainsworth M. Essential boundary conditions and multi-point constraints in finite element analysis[J]. Computer Method in Applied Mechanics and Engineering,2001,190(48): 6323-6339.
    [18] Bends?e M P, Sigmund O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics,1999,69(9): 635-654.
    [19] Sigmund O. A 99 line topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization,2001,21(2): 120-127.
  • 加载中
计量
  • 文章访问数:  977
  • HTML全文浏览量:  73
  • PDF下载量:  1360
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-16
  • 修回日期:  2016-09-15
  • 刊出日期:  2016-11-15

目录

    /

    返回文章
    返回