留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多点自由度约束的方向性保形拓扑优化设计方法

朱继宏 王林 李昱 张卫红

朱继宏, 王林, 李昱, 张卫红. 基于多点自由度约束的方向性保形拓扑优化设计方法[J]. 应用数学和力学, 2016, 37(10): 999-1012. doi: 10.21656/1000-0887.370255
引用本文: 朱继宏, 王林, 李昱, 张卫红. 基于多点自由度约束的方向性保形拓扑优化设计方法[J]. 应用数学和力学, 2016, 37(10): 999-1012. doi: 10.21656/1000-0887.370255
ZHU Ji-hong, WANG Lin, LI Yu, ZHANG Wei-hong. A Directional Shape-Preserving Topology Optimization Method With Multi-Point Constraints[J]. Applied Mathematics and Mechanics, 2016, 37(10): 999-1012. doi: 10.21656/1000-0887.370255
Citation: ZHU Ji-hong, WANG Lin, LI Yu, ZHANG Wei-hong. A Directional Shape-Preserving Topology Optimization Method With Multi-Point Constraints[J]. Applied Mathematics and Mechanics, 2016, 37(10): 999-1012. doi: 10.21656/1000-0887.370255

基于多点自由度约束的方向性保形拓扑优化设计方法

doi: 10.21656/1000-0887.370255
基金项目: 国家自然科学基金(11432011;51521061);111引智计划(B07050);中央高校基本科研业务费(3102014JC02020505)
详细信息
    作者简介:

    朱继宏(1981—),男,教授,博士,博士生导师(通讯作者. E-mail: JH.Zhu@nwpu.edu.cn).

  • 中图分类号: V222

A Directional Shape-Preserving Topology Optimization Method With Multi-Point Constraints

Funds: The National Natural Science Foundation of China(11432011;51521061)
  • 摘要: 保持飞行器气动面、功能面等型面的精确外形是飞行器刚度设计的重要内容.为控制飞行器结构局部区域的翘曲变形模式,抑制特定方向上有害的翘曲变形,提出考虑结构方向性保形约束的拓扑优化设计新方法.一方面,引入由保形区域内有限控制点生成的人工附加弱单元(artificial weak elements,AWEs),使控制点各自由度位移通过多点自由度约束(multi-point constraints,MPCs)传递到AWEs上,约束AWEs的变形能可以实现对保形区域翘曲变形的抑制;另一方面,合理配置多点自由度约束,将需要抑制的特定方向上自由度耦合到AWEs上,从而实现方向性保形优化设计.数值算例证明所提出的优化设计方法能在结构刚度拓扑优化设计的基础上实现对局部保形区域在特定方向上翘曲变形的有效控制,与已有约束所有自由度翘曲变形的保形拓扑优化设计相比,方向性保形优化设计在变形控制效果上更加具有灵活性.
  • [1] Sigmund O, Bendse M P. Topology Optimization: Theory, Methods, and Applications [M]. Berlin: Springer, 2003: 25.
    [2] GUO Xu, CHENG Geng-dong. Recent development in structural design and optimization[J].Acta Mechanica Sinica,2010,26(6): 807-823.
    [3] Sigmund O, Maute K. Topology optimization approaches[J]. Structural & Multidisciplinary Optimization,2013,48(6): 1031-1055.
    [4] ZHU Ji-hong, ZHANG Wei-hong, XIA Liang. Topology optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering,2015: 1-28. doi: 10.1007/s11831-015-9151-2.
    [5] 许华旸, 关立文, 王立平, 陈祥. 惯性载荷下飞行模拟器大臂结构的拓扑优化[J]. 机械工程学报,2014,50(9): 14-23.(XU Hua-yang, GUAN Li-wen, WANG Li-ping, CHEN Xiang. Topology optimization for the arm of flight simulator under inertial loads[J]. Journal of Mechanical Engineering,2014,50(9): 14-23.(in Chinese))
    [6] 宋志强, 史青录, 彭万万, 陈贯祥. 拓扑优化在提高电机底座固有频率中的应用[J]. 机械工程与自动化, 2014(3): 8-10.(SONG Zhi-qiang, SHI Qing-lu, PENG Wan-wan, CHEN Guan-xiang. Application of topology optimization in improving natural frequency of motor base[J]. Journal of Mechanical Engineering & Automation,2014(3): 8-10.(in Chinese))
    [7] 左孔天, 陈立平, 张云清, 王书亭. 用拓扑优化方法进行热传导散热体的结构优化设计[J]. 机械工程学报, 2005,41(4): 13-16.(ZUO Kong-tian, CHEN Li-ping, ZHANG Yun-qing, WANG Shu-ting. Structural optimal design of heat conductive body with topology optimization method[J]. Chinese Journal of Mechanical Engineering,2005,41(4): 13-16.(in Chinese))
    [8] 张克明. 飞机生产中产生不协调问题的原因及解决办法[J]. 南京航空航天大学学报, 1995,27(2): 221-228.(ZHANG Ke-ming. Reason and solution of incoordinate problem occuring in aeroplane manufacture[J]. Journal of Nangjing University of Aeronautics & Astronautics,1995,27(2): 221-228.(in Chinese))
    [9] Huff J. Improving the service life of flight deck windshields[J]. Boeing Aero Magazine,2002,17: 3-9.
    [10] 苏雁飞, 谭申刚, 薛应举, 惠红军. 运输类飞机机身大开口结构加强方式理论研究[J]. 力学与实践, 2013,35(6): 59-64.(SU Yan-fei, TAN Shen-gang, XUE Ying-ju, HUI Hong-jun. The strengthening of aero-transport with large opening[J]. Mechanics in Engineering,2013,35(6): 59-64.(in Chinese))
    [11] ZUO Zhi-hao, XIE Yi-min. Evolutionary topology optimization of continuum structures with a global displacement control[J]. Computer-Aided Design,2014,56(11): 58-67.
    [12] Rong J H, Yi J H. A structural topological optimization method for multi-displacement constraints and any initial topology configuration[J]. Acta Mechanica Sinica,2010,26(5): 735-744.
    [13] 杨德庆, 隋允康, 刘正兴, 孙焕纯. 应力和位移约束下连续体结构拓扑优化[J]. 应用数学和力学,2000,21(1): 17-24.(YANG De-qing, SUI Yun-kang, LIU Zheng-xing, SUN Huan-chun. Topology optimization design of continuum structures under stress and displacement constraints[J]. Applied Mathematics and Mechanics, 2000,21(1): 17-24.(in Chinese))
    [14] 朱继宏, 李昱, 张卫红, 侯杰. 考虑多点保形的结构拓扑优化设计方法[J]. 航空学报, 2015,36(2): 518-526.(ZHU Ji-hong, LI Yu, ZHANG Wei-hong, HOU Jie. Structural topology optimization with multi-point shape-preserving constraint[J]. Acta Aeronautica et Astronautica Sinica,2015,36(2): 518-526.(in Chinese))
    [15] ZHU Ji-hong, LI Yu, ZHANG Wei-hong, HOU Jie. Shape preserving design with structural topology optimization[J]. Structural and Multidisciplinary Optimization,2015,53(4): 893-906.
    [16] Genberg V L. Optical performance criteria in optimum structural design[C]// Proceedings SPIE 3786, Optomechanical Engineering and Vibration Control,1999: 248-255. doi: 10.1117/12.363801.
    [17] Ainsworth M. Essential boundary conditions and multi-point constraints in finite element analysis[J]. Computer Method in Applied Mechanics and Engineering,2001,190(48): 6323-6339.
    [18] Bends?e M P, Sigmund O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics,1999,69(9): 635-654.
    [19] Sigmund O. A 99 line topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization,2001,21(2): 120-127.
  • 加载中
计量
  • 文章访问数:  1133
  • HTML全文浏览量:  111
  • PDF下载量:  961
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-16
  • 修回日期:  2016-09-15
  • 刊出日期:  2016-10-15

目录

    /

    返回文章
    返回