留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Frobenius定理的Hamilton-Jacobi方法的几何解释

肖静 刘畅 王勇

肖静, 刘畅, 王勇. 基于Frobenius定理的Hamilton-Jacobi方法的几何解释[J]. 应用数学和力学, 2017, 38(6): 708-714. doi: 10.21656/1000-0887.370268
引用本文: 肖静, 刘畅, 王勇. 基于Frobenius定理的Hamilton-Jacobi方法的几何解释[J]. 应用数学和力学, 2017, 38(6): 708-714. doi: 10.21656/1000-0887.370268
XIAO Jing, LIU Chang, WANG Yong. A Geometric Explanation of Hamilton-Jacobi Methods Based on the Frobenius Theorem[J]. Applied Mathematics and Mechanics, 2017, 38(6): 708-714. doi: 10.21656/1000-0887.370268
Citation: XIAO Jing, LIU Chang, WANG Yong. A Geometric Explanation of Hamilton-Jacobi Methods Based on the Frobenius Theorem[J]. Applied Mathematics and Mechanics, 2017, 38(6): 708-714. doi: 10.21656/1000-0887.370268

基于Frobenius定理的Hamilton-Jacobi方法的几何解释

doi: 10.21656/1000-0887.370268
基金项目: 国家自然科学基金(11572145;11202090);辽宁省教育厅科学技术一般项目(L2013005);广东省自然科学基金(2015A030310127);中国博士后科学基金(2014M560203)
详细信息
    作者简介:

    肖静(1985—),女,讲师,博士(E-mail: xjazyh@163.com);王勇(1973—),男,副教授,博士生(通讯作者. E-mail: ksh_wangyong@foxmail.com).

  • 中图分类号: O316

A Geometric Explanation of Hamilton-Jacobi Methods Based on the Frobenius Theorem

Funds: The National Natural Science Foundation of China(11572145;11202090);China Postdoctoral Science Foundation(2014M560203)
  • 摘要: 给出了一阶偏微分方程特征微分方程组的一种基于Frobenius定理的几何解释,通过研究发现根据Frobenius定理可以从一阶偏微分方程直接得到其特征微分方程组;在此基础上说明如何利用几何方法从Hamilton正则方程出发找到与之对应的Hamilton-Jacobi方程.这种方法可以被用于非保守或非完整Hamilton力学问题的研究中,经典Hamilton-Jacobi方法是这种方法的一个特例.
  • [1] Arnold V I. Mathematical Methods of Classical Mechanics [M]. New York: Springer-Verlag, 1978: 161-271.
    [2] 陈滨. 分析动力学[M]. 第2版. 北京: 北京大学出版社, 2012: 445-464.(CHEN Bin. Analytic Dynamics [M]. 2nd ed. Beijing: Peking University Press, 2012: 445-464.(in Chinese))
    [3] 梅凤翔. 分析力学[M]. 北京: 北京理工大学出版社, 2013: 272-287.(MEI Feng-xiang. Analytical Mechanics [M]. Beijing: Beijing Institute of Technology Press, 2013: 272-287.(in Chinese))
    [4] Marmo G, Morandi G, Mukunda N. A geometrical approach to the Hamilton-Jacobi form of dynamics and its generalizations[J]. Rivista del Nuovo Cimento,1990,13(8): 1-74.
    [5] Barbero-Linán M, de León M, de Diego D M. Lagrangian submanifolds and the Hamilton-Jacobi equation[J]. Monatshefte für Mathematik,2013,171(3): 269-290.
    [6] Marmo G, Morandi G, Mukunda N. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics[J]. Journal of Geometric Mechanics,2009,1(3): 317-355.
    [7] Kim J H, Lee H W. Canonical transformations and the Hamilton-Jacobi theory in quantum mechanics[J]. Canadian Journal of Physics,1999,77(6): 411-425.
    [8] Fleming W H, Rishel R W. Deterministic and Stochastic Optimal Control [M]. Berlin: Springer, 1975: 80-105.
    [9] Fedkiw R P, Aslam T, Merrima B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows(the ghost fluid method)[J]. Journal of Computational Physics,1999,152(2): 457-492.
    [10] Courant R, Hilbert D. Methods of Mathematical Physics [M]. Vol2. New York: John Wiley & Sons, 1989: 62-153.
    [11] Levine H. Partial Differential Equation [M]. Vol6. Boston: International Press, 1997: 91-134.
  • 加载中
计量
  • 文章访问数:  1610
  • HTML全文浏览量:  258
  • PDF下载量:  665
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-05
  • 修回日期:  2016-09-30
  • 刊出日期:  2017-06-15

目录

    /

    返回文章
    返回