留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性阻尼非线性刚度隔振系统随机动力学特性研究

黎崛珉 陆泽琦 陈立群

黎崛珉, 陆泽琦, 陈立群. 非线性阻尼非线性刚度隔振系统随机动力学特性研究[J]. 应用数学和力学, 2017, 38(6): 613-621. doi: 10.21656/1000-0887.370277
引用本文: 黎崛珉, 陆泽琦, 陈立群. 非线性阻尼非线性刚度隔振系统随机动力学特性研究[J]. 应用数学和力学, 2017, 38(6): 613-621. doi: 10.21656/1000-0887.370277
LI Jue-min, LU Ze-qi, CHEN Li-qun. An Investigation on Nonlinear-Damping and Nonlinear-Stiffness Vibration Isolation Systems Under Random Excitations[J]. Applied Mathematics and Mechanics, 2017, 38(6): 613-621. doi: 10.21656/1000-0887.370277
Citation: LI Jue-min, LU Ze-qi, CHEN Li-qun. An Investigation on Nonlinear-Damping and Nonlinear-Stiffness Vibration Isolation Systems Under Random Excitations[J]. Applied Mathematics and Mechanics, 2017, 38(6): 613-621. doi: 10.21656/1000-0887.370277

非线性阻尼非线性刚度隔振系统随机动力学特性研究

doi: 10.21656/1000-0887.370277
基金项目: 国家自然科学基金(11502135; 11572182)
详细信息
    作者简介:

    黎崛珉 (1992—),男,硕士生(E-mail: lijuemin@aliyun.com);陆泽琦(1985—),男,讲师,硕士生导师(通讯作者. E-mail: luzeqi@shu.edu.cn).

  • 中图分类号: 322;O328

An Investigation on Nonlinear-Damping and Nonlinear-Stiffness Vibration Isolation Systems Under Random Excitations

Funds: The National Natural Science Foundation of China (11502135; 11572182)
  • 摘要: 针对随机激励环境,同时引入刚度和阻尼非线性来提高隔振系统的隔振性能.刚度和阻尼非线性分别是由水平弹簧和水平阻尼的几何布置获得.通过求解Fokker-Planck-Kolmogorov(FPK)方程等效非线性随机振动方程来研究非线性隔振系统在随机激励下的隔振性能,并使用路径积分和Monte-Carlo数值方法进行验证.在此基础上研究刚度非线性和阻尼非线性对隔振系统在随机激励下力传递率及其概率分布的影响.研究表明随着噪声强度的增加,非线性阻尼抑制振动的能力增强,但是在较小的随机激励下线性阻尼优于非线性阻尼.
  • [1] Rivin E I. Passive Vibration Isolation [M]. New York: ASME Press, 2003.
    [2] Mead D J. Passive Vibration Control [M]. London: John Wiley & Sons Ltd, 1998.
    [3] Piersol A G, Paez T L. Harris’ Shock and Vibration Handbook [M]. 6th ed. New York: McGraw-Hill, 2009.
    [4] Ibrahim R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound and Vibration,2008,314(3/5): 371-452.
    [5] JU Li-wen, Blair D G. Low resonant frequency cantilever spring vibration isolator for gravitational wave detectors[J]. Review of Scientific Instruments,1994,65(11): 3482-3488.
    [6] Virgin L N, Santillan S T, Plaut R H. Vibration isolation using extreme geometric nonlinearity[J]. Journal of Sound and Vibration,2008,315(3): 721-731.
    [7] Alabuzhev P, Gritchin A, Kim L, et al. Vibration Protecting and Measuring Systems With Quasi-Zero Stiffness [M]. New York: Hemisphere Publishing Corporation, 1989.
    [8] Carrella A, Brennan M J, Waters T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences,2012,55(1): 22-29.
    [9] Huang X Ch, Liu X T, Hua H X. Effects of stiffness and load imperfection on the isolation performance of a high-static-low-dynamic-stiffness non-linear isolator under base displacement excitation[J]. International Journal of Non-Linear Mechanics,2014,65: 32-43.
    [10] Ravindra B, Mallik A K. Hard Duffing-type vibration isolator with combined Coulomb and viscous damping[J]. International Journal of Non-Linear Mechanics,1993,28(4): 427-440.
    [11] Ravindra B, Mallik A K. Chaotic response of a harmonically excited mass on an isolator with non-linear stiffness and damping characteristics[J]. Journal of Sound and Vibration,1995,182(3): 345-353.
    [12] Ho C, Lang Z, Billings S A. A frequency domain analysis of the effects of nonlinear damping on the Duffing equation[J]. Mechanical Systems and Signal Processing,2014,45(1): 49-67.
    [13] Ho C, Lang Z, Billings S A. Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities[J]. Journal of Sound and Vibration,2014,333(12): 2489-2504.
    [14] Kirk C L. Non-linear random vibration isolators[J]. Journal of Sound and Vibration,1990,124(1): 157-182.
    [15] Le T D, Ahn K K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[J]. Journal of Sound and Vibration,2011,330(26): 6311-6335.
    [16] 李倩, 刘俊卿, 陈诚诚. 随机激励下四自由度车辆-道路耦合系统动力分析[J]. 应用数学和力学, 2015,36(5): 460-473.(LI Qian, LIU Jun-qing, CHEN Cheng-cheng. Dynamic analysis of the 4-DOF vehicle-road coupling system under random excitation[J]. Applied Mathematics and Mechanics,2015,36(5): 460-473.(in Chinese))
    [17] 赵岩, 李明武, 林家浩, 等. 陀螺系统随机振动分析的辛本征展开方法[J]. 应用数学和力学, 2015,36(5): 449-459.(ZHAO Yan, LI Ming-wu, LIN Jia-hao, et al. Symlpectic eigenspace expansion for the random vibration analysis of gyroscopic systems[J]. Applied Mathematics and Mechanics,2015,36(5): 449-459.(in Chinese))
    [18] 庞辉, 彭威, 原园. 随机激励下重载车辆空气悬架参数多目标优化[J]. 振动与冲击, 2014,〖STHZ〗 33(6): 156-160, 178.(PANG Hui, PENG Wei, YUAN Yuan. Multi-objective optimization of pneumatic suspension parameters for heavy vehicle under random excitation[J]. Journal of Vibration and Shock, 2014,33(6): 156-160, 178.(in Chinese))
    [19] 董满生, 李满, 林志, 等. 随机地震激励下水中悬浮隧道的动力响应[J]. 应用数学和力学, 2014,35(12): 1320-1329.(DONG Man-sheng, LI Man, LIN Zhi, et al. Dynamic response of the submerged floating tunnel under random seismic excitation[J]. Applied Mathematics and Mechanics,2014,35(12): 1320-1329.(in Chinese))
    [20] 静行, 刘真真, 原方. 随机激励下基于ICA的结构模态参数识别[J]. 噪声与振动控制, 2014,34(6): 178-183.(JING Hang, LIU Zhen-zhen, YUAN Fang. Structural modal parameter identification based on ICA under random excitation[J]. Noise and Vibration Control,2014,34(6): 178-183.(in Chinese))
    [21] 何青, 毛新华, 褚东亮. 随机激励下双稳态压电振动发电机的振动特性[J]. 噪声与振动控制, 2015,35(2): 36-40.(HE Qing, MAO Xin-hua, CHU Dong-liang. Dynamic characteristics of a bistable piezoelectric vibration generator under random excitation[J]. Noise and Vibration Control,2015,35(2): 36-40.(in Chinese))
    [22] Yu J S, Cai G Q, Lin Y K. A new path integration procedure based on Gauss-Legendre scheme[J]. International Journal of Non-Linear Mechanics,1997,32(4): 759-768.
  • 加载中
计量
  • 文章访问数:  1779
  • HTML全文浏览量:  230
  • PDF下载量:  1307
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-08
  • 修回日期:  2014-04-17
  • 刊出日期:  2017-06-15

目录

    /

    返回文章
    返回